GCZRec: Generative Collaborative Zero-Shot Framework for Cold Start News Recommendation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254338" target="_blank" >RIV/61989100:27240/24:10254338 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10414986" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10414986</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3359053" target="_blank" >10.1109/ACCESS.2024.3359053</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GCZRec: Generative Collaborative Zero-Shot Framework for Cold Start News Recommendation
Popis výsledku v původním jazyce
The aim of personalized news recommendation is to suggest news stories to the users that are most interesting for them. To improve the user experience, it is important that these news items are not only relevant to the user but also get recommended to them as soon as they are available. The inability of traditional collaborative filtering approach to recommend such cold start items has led to techniques that incorporate latent features of items in order to make cold start recommendations such as content based filtering and deep neural network-based approaches. However, these existing techniques do not make use of any collaborative information between users and items as well as latent features at the same time and thus fail to provide any serendipity which is an important aspect of any recommender system. Moreover, these underlying collaborative signals between users and items are crucial to improving the overall quality of recommender systems and can also be utilized to make cold start recommendations. In this paper, we propose the Generative Collaborative Zero-Shot Recommender System framework (GCZRec) which makes use of both the latent user and item features as well as the underlying collaborative information to generate both warm start and cold start recommendations. We evaluate our framework for news recommendation task given cold start and warm start cases for both users and news items. We also discuss that our model can be plugged in and used as preprocessing to improve the performance of an existing recommender system.
Název v anglickém jazyce
GCZRec: Generative Collaborative Zero-Shot Framework for Cold Start News Recommendation
Popis výsledku anglicky
The aim of personalized news recommendation is to suggest news stories to the users that are most interesting for them. To improve the user experience, it is important that these news items are not only relevant to the user but also get recommended to them as soon as they are available. The inability of traditional collaborative filtering approach to recommend such cold start items has led to techniques that incorporate latent features of items in order to make cold start recommendations such as content based filtering and deep neural network-based approaches. However, these existing techniques do not make use of any collaborative information between users and items as well as latent features at the same time and thus fail to provide any serendipity which is an important aspect of any recommender system. Moreover, these underlying collaborative signals between users and items are crucial to improving the overall quality of recommender systems and can also be utilized to make cold start recommendations. In this paper, we propose the Generative Collaborative Zero-Shot Recommender System framework (GCZRec) which makes use of both the latent user and item features as well as the underlying collaborative information to generate both warm start and cold start recommendations. We evaluate our framework for news recommendation task given cold start and warm start cases for both users and news items. We also discuss that our model can be plugged in and used as preprocessing to improve the performance of an existing recommender system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
12
Číslo periodika v rámci svazku
Neuveden
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
16610-16620
Kód UT WoS článku
001161858700001
EID výsledku v databázi Scopus
2-s2.0-85183612709