Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

GCZRec: Generative Collaborative Zero-Shot Framework for Cold Start News Recommendation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254338" target="_blank" >RIV/61989100:27240/24:10254338 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10414986" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10414986</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3359053" target="_blank" >10.1109/ACCESS.2024.3359053</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    GCZRec: Generative Collaborative Zero-Shot Framework for Cold Start News Recommendation

  • Popis výsledku v původním jazyce

    The aim of personalized news recommendation is to suggest news stories to the users that are most interesting for them. To improve the user experience, it is important that these news items are not only relevant to the user but also get recommended to them as soon as they are available. The inability of traditional collaborative filtering approach to recommend such cold start items has led to techniques that incorporate latent features of items in order to make cold start recommendations such as content based filtering and deep neural network-based approaches. However, these existing techniques do not make use of any collaborative information between users and items as well as latent features at the same time and thus fail to provide any serendipity which is an important aspect of any recommender system. Moreover, these underlying collaborative signals between users and items are crucial to improving the overall quality of recommender systems and can also be utilized to make cold start recommendations. In this paper, we propose the Generative Collaborative Zero-Shot Recommender System framework (GCZRec) which makes use of both the latent user and item features as well as the underlying collaborative information to generate both warm start and cold start recommendations. We evaluate our framework for news recommendation task given cold start and warm start cases for both users and news items. We also discuss that our model can be plugged in and used as preprocessing to improve the performance of an existing recommender system.

  • Název v anglickém jazyce

    GCZRec: Generative Collaborative Zero-Shot Framework for Cold Start News Recommendation

  • Popis výsledku anglicky

    The aim of personalized news recommendation is to suggest news stories to the users that are most interesting for them. To improve the user experience, it is important that these news items are not only relevant to the user but also get recommended to them as soon as they are available. The inability of traditional collaborative filtering approach to recommend such cold start items has led to techniques that incorporate latent features of items in order to make cold start recommendations such as content based filtering and deep neural network-based approaches. However, these existing techniques do not make use of any collaborative information between users and items as well as latent features at the same time and thus fail to provide any serendipity which is an important aspect of any recommender system. Moreover, these underlying collaborative signals between users and items are crucial to improving the overall quality of recommender systems and can also be utilized to make cold start recommendations. In this paper, we propose the Generative Collaborative Zero-Shot Recommender System framework (GCZRec) which makes use of both the latent user and item features as well as the underlying collaborative information to generate both warm start and cold start recommendations. We evaluate our framework for news recommendation task given cold start and warm start cases for both users and news items. We also discuss that our model can be plugged in and used as preprocessing to improve the performance of an existing recommender system.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    Neuveden

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    16610-16620

  • Kód UT WoS článku

    001161858700001

  • EID výsledku v databázi Scopus

    2-s2.0-85183612709