A manifold intelligent decision system for fusion and benchmarking of deep waste-sorting models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254584" target="_blank" >RIV/61989100:27240/24:10254584 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0952197624000848" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0952197624000848</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engappai.2024.107926" target="_blank" >10.1016/j.engappai.2024.107926</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A manifold intelligent decision system for fusion and benchmarking of deep waste-sorting models
Popis výsledku v původním jazyce
Increases in population and prosperity are linked to a worldwide rise in garbage. The "classification" and "recycling" of solid waste is a crucial tactic for dealing with the waste problem. This paper presents a new two-layer intelligent decision system for waste sorting based on fused features of Deep Learning (DL) models as well as a selection of an optimal deep Waste-Sorting Model (WSM) based on Multi-Criteria Decision Making (MCDM). A dataset comprising 1451 samples of images of waste, distributed across four classes - cardboard (403), glass (501), metal (410), and general trash (137), was used for sorting. This study proposes a Multi-Fused Decision Matrix (MFDM) based on identified fusion score level rules, evaluation criteria, and deep fused waste-sorting models. Five fusion rules used in the sorting process and the evaluation perspectives into the MFDM are sum, weighted sum, product, maximum, and minimum rules. Additionally, each of entropy and Visekriterijumska Optimizacija i Kompromisno Resenje in Serbian (VIKOR) methods was used for weighting selected criteria as well as ranking deep WSMs. The highest accuracy rate of 98% was scored by ResNet50-GoogleNet- Inception based on the minimum rule. However, under the same rule, an insufficient accuracy rate of sorting was presented by ResNet50-GoogleNet-Xception. Since Qi = 0 for Inception-Xception, the final output based on MCDM methods indicates that the fused Inception-Xception model outperforms the other fused deep WSMs, which achieved the lowest values of Qi. Thus, Inception-Xception was chosen as the best deep waste-sorting model based on images of waste, multiple evaluation criteria, and different fusion perspectives. The mean and standard deviation metrics were both used to validate the selection findings objectively. The suggested approach can aid urban decision-makers in prioritizing and choosing an Artificial Intelligence (AI)-optimized optimal sorting model. (C) 2024 The Authors
Název v anglickém jazyce
A manifold intelligent decision system for fusion and benchmarking of deep waste-sorting models
Popis výsledku anglicky
Increases in population and prosperity are linked to a worldwide rise in garbage. The "classification" and "recycling" of solid waste is a crucial tactic for dealing with the waste problem. This paper presents a new two-layer intelligent decision system for waste sorting based on fused features of Deep Learning (DL) models as well as a selection of an optimal deep Waste-Sorting Model (WSM) based on Multi-Criteria Decision Making (MCDM). A dataset comprising 1451 samples of images of waste, distributed across four classes - cardboard (403), glass (501), metal (410), and general trash (137), was used for sorting. This study proposes a Multi-Fused Decision Matrix (MFDM) based on identified fusion score level rules, evaluation criteria, and deep fused waste-sorting models. Five fusion rules used in the sorting process and the evaluation perspectives into the MFDM are sum, weighted sum, product, maximum, and minimum rules. Additionally, each of entropy and Visekriterijumska Optimizacija i Kompromisno Resenje in Serbian (VIKOR) methods was used for weighting selected criteria as well as ranking deep WSMs. The highest accuracy rate of 98% was scored by ResNet50-GoogleNet- Inception based on the minimum rule. However, under the same rule, an insufficient accuracy rate of sorting was presented by ResNet50-GoogleNet-Xception. Since Qi = 0 for Inception-Xception, the final output based on MCDM methods indicates that the fused Inception-Xception model outperforms the other fused deep WSMs, which achieved the lowest values of Qi. Thus, Inception-Xception was chosen as the best deep waste-sorting model based on images of waste, multiple evaluation criteria, and different fusion perspectives. The mean and standard deviation metrics were both used to validate the selection findings objectively. The suggested approach can aid urban decision-makers in prioritizing and choosing an Artificial Intelligence (AI)-optimized optimal sorting model. (C) 2024 The Authors
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Applications of Artificial Intelligence
ISSN
0952-1976
e-ISSN
—
Svazek periodika
132
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
001171337600001
EID výsledku v databázi Scopus
2-s2.0-85183853825