Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Power quality validation in micro off-grid daily load using modular differential, LSTM deep, and probability statistics models processing NWP-data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255312" target="_blank" >RIV/61989100:27240/24:10255312 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1080/21642583.2024.2395400" target="_blank" >https://doi.org/10.1080/21642583.2024.2395400</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/21642583.2024.2395400" target="_blank" >10.1080/21642583.2024.2395400</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Power quality validation in micro off-grid daily load using modular differential, LSTM deep, and probability statistics models processing NWP-data

  • Popis výsledku v původním jazyce

    Load corrections with respect to power quality (PQ) after the first pre-estimate of Renewable Energy (RE) power consumption must ensure system-tolerant performance without malfunctions. First, acceptable daily load sequences for the attached equipment are combined and determined according to the RE potential and charge states in accommodation to user needs and normal operation. The main motivation is a consequent day-to-day verification of algorithmically scheduled power consumption tasks in the proposed two-stage optimisation according to the system resources and user needs. Statistical artificial intelligence (AI) is employed, as local atmospheric turbulences with terrain obstacles and unexpected user activity result in various operational states in real microsystems. A new unconventional neurocomputing strategy, called Differential Learning (DfL), was applied in the modelling and prediction of the high dynamical PQ parameters in an experimental RE based system according to input-output training data, without an exact specification of its behaviour. The DfL models were compared with recent deep and machine learning techniques. Prediction models were formed after an initial detection of adequate daily training intervals. The AI models are finally tested to process the complete 24-hour forecast series of related input variables used in learning, to estimate the PQ target output at the corresponding times.

  • Název v anglickém jazyce

    Power quality validation in micro off-grid daily load using modular differential, LSTM deep, and probability statistics models processing NWP-data

  • Popis výsledku anglicky

    Load corrections with respect to power quality (PQ) after the first pre-estimate of Renewable Energy (RE) power consumption must ensure system-tolerant performance without malfunctions. First, acceptable daily load sequences for the attached equipment are combined and determined according to the RE potential and charge states in accommodation to user needs and normal operation. The main motivation is a consequent day-to-day verification of algorithmically scheduled power consumption tasks in the proposed two-stage optimisation according to the system resources and user needs. Statistical artificial intelligence (AI) is employed, as local atmospheric turbulences with terrain obstacles and unexpected user activity result in various operational states in real microsystems. A new unconventional neurocomputing strategy, called Differential Learning (DfL), was applied in the modelling and prediction of the high dynamical PQ parameters in an experimental RE based system according to input-output training data, without an exact specification of its behaviour. The DfL models were compared with recent deep and machine learning techniques. Prediction models were formed after an initial detection of adequate daily training intervals. The AI models are finally tested to process the complete 24-hour forecast series of related input variables used in learning, to estimate the PQ target output at the corresponding times.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Systems Science &amp; Control Engineering

  • ISSN

    2164-2583

  • e-ISSN

    2164-2583

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    1-16

  • Kód UT WoS článku

    001299684500001

  • EID výsledku v databázi Scopus