Designing a multi-objective energy management system in multiple interconnected water and power microgrids based on the MOPSO algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255360" target="_blank" >RIV/61989100:27240/24:10255360 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/24:10255360
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405844024073110" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844024073110</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2024.e31280" target="_blank" >10.1016/j.heliyon.2024.e31280</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Designing a multi-objective energy management system in multiple interconnected water and power microgrids based on the MOPSO algorithm
Popis výsledku v původním jazyce
In this paper, a method of the energy management system (EMS) in multiple microgrids considering the constraints of power flow based on the three-objective optimization model is presented. The studied model specifications, the variable speed pumps in the water network as well and the storage tanks are optimally planned as flexible resources to reduce operating costs and pollution. The proposed method is implemented hierarchically through two primary and secondary control layers. At the primary control level, each microgrid performs local planning for its subscribers and energy generation resources, and their excess or unsupplied power is determined. Then, by sending this information to the central energy management system (CEMS) at the secondary level, it determines the amount of energy exchange, taking into account the limitations of power flow. Energy storage systems (ESS) are also considered to maintain the balance between power generation by renewable energy sources and consumption load. Also, the demand response (DR) program has been used to smooth the load curve and reduce operating costs. Finally, in this article, the multi-objective particle swarm optimization (MOPSO) is used to solve the proposed three-objective problem with three cost functions generation, pollution, and pump operation. Additionally, sensitivity analysis was conducted with uncertainties of 25 % and 50 % in network generation units, exploring their impact on objective functions. The proposed model has been tested on the microgrid of a 33-bus test distribution and 15-node test water system and has been investigated for different cases. The simulation results prove the effectiveness of the integration of water and power network planning in reducing the operating cost and emission of pollution in such a way that the proposed control scheme properly controls the performance of microgrids and the network in interactions with each other and has a high level of robustness, stable behavior under different conditions and high quality of the power supply. In such a way that improvements of 41.1 %, 52.2 %, and 20.4 % in the defined objective functions and the evaluation using DM, SM, and MID indices further confirms the algorithm ' s enhanced performance in optimizing the specified objective functions by 51 %, 11 %, and 5.22 %, respectively.
Název v anglickém jazyce
Designing a multi-objective energy management system in multiple interconnected water and power microgrids based on the MOPSO algorithm
Popis výsledku anglicky
In this paper, a method of the energy management system (EMS) in multiple microgrids considering the constraints of power flow based on the three-objective optimization model is presented. The studied model specifications, the variable speed pumps in the water network as well and the storage tanks are optimally planned as flexible resources to reduce operating costs and pollution. The proposed method is implemented hierarchically through two primary and secondary control layers. At the primary control level, each microgrid performs local planning for its subscribers and energy generation resources, and their excess or unsupplied power is determined. Then, by sending this information to the central energy management system (CEMS) at the secondary level, it determines the amount of energy exchange, taking into account the limitations of power flow. Energy storage systems (ESS) are also considered to maintain the balance between power generation by renewable energy sources and consumption load. Also, the demand response (DR) program has been used to smooth the load curve and reduce operating costs. Finally, in this article, the multi-objective particle swarm optimization (MOPSO) is used to solve the proposed three-objective problem with three cost functions generation, pollution, and pump operation. Additionally, sensitivity analysis was conducted with uncertainties of 25 % and 50 % in network generation units, exploring their impact on objective functions. The proposed model has been tested on the microgrid of a 33-bus test distribution and 15-node test water system and has been investigated for different cases. The simulation results prove the effectiveness of the integration of water and power network planning in reducing the operating cost and emission of pollution in such a way that the proposed control scheme properly controls the performance of microgrids and the network in interactions with each other and has a high level of robustness, stable behavior under different conditions and high quality of the power supply. In such a way that improvements of 41.1 %, 52.2 %, and 20.4 % in the defined objective functions and the evaluation using DM, SM, and MID indices further confirms the algorithm ' s enhanced performance in optimizing the specified objective functions by 51 %, 11 %, and 5.22 %, respectively.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Heliyon
ISSN
2405-8440
e-ISSN
2405-8440
Svazek periodika
10
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
27
Strana od-do
nestránkováno
Kód UT WoS článku
001243458700001
EID výsledku v databázi Scopus
2-s2.0-85193266035