Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A 3D-printed multi-parametric wearable system for monitoring breathing activity and low back movements

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255389" target="_blank" >RIV/61989100:27240/24:10255389 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10584160" target="_blank" >https://ieeexplore.ieee.org/document/10584160</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/MetroInd4.0IoT61288.2024.10584160" target="_blank" >10.1109/MetroInd4.0IoT61288.2024.10584160</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A 3D-printed multi-parametric wearable system for monitoring breathing activity and low back movements

  • Popis výsledku v původním jazyce

    Among many applications of Fiber Bragg gratings (FBGs) in healthcare, non-invasive monitoring via wearable devices is one of the most popular. Their compact size, lightness, immunity to electromagnetic interference, and high strain sensitivity make them ideal for various applications, including vital sign monitoring and human motion analysis. Wearables based on FBGs consist of silicone substrates and, more recently, 3D-printed structures that enclose gratings to improve FBG adaptability to the human body or compliance with the human skin. 3D-printed wearables provide greater design flexibility, rapid prototyping, and customization than their silicone counterparts.This study presents a wearable strain sensor that combines the advantages of FBG technology with those of additive manufacturing to monitor vital signs and joint movement. We focused on the breathing activity and the low back movement detection. To this purpose, the design of the proposed 3D-printed sensor features a dog bone shape to optimize the FBG response to strain. In addition, the 3D-printed matrix includes lateral openings for the insertion of the anchorage mechanisms (i.e., elastic fabric), ensuring high wearability and adaptability to different body anthropometries. The sensor was fabricated via fused deposition modeling and the sensitivity to strain was evaluated by performing a metrological characterization. Lastly, a pilot test on a healthy volunteer assessed its feasibility in monitoring respiratory rate and low back movements showing promising capacities.

  • Název v anglickém jazyce

    A 3D-printed multi-parametric wearable system for monitoring breathing activity and low back movements

  • Popis výsledku anglicky

    Among many applications of Fiber Bragg gratings (FBGs) in healthcare, non-invasive monitoring via wearable devices is one of the most popular. Their compact size, lightness, immunity to electromagnetic interference, and high strain sensitivity make them ideal for various applications, including vital sign monitoring and human motion analysis. Wearables based on FBGs consist of silicone substrates and, more recently, 3D-printed structures that enclose gratings to improve FBG adaptability to the human body or compliance with the human skin. 3D-printed wearables provide greater design flexibility, rapid prototyping, and customization than their silicone counterparts.This study presents a wearable strain sensor that combines the advantages of FBG technology with those of additive manufacturing to monitor vital signs and joint movement. We focused on the breathing activity and the low back movement detection. To this purpose, the design of the proposed 3D-printed sensor features a dog bone shape to optimize the FBG response to strain. In addition, the 3D-printed matrix includes lateral openings for the insertion of the anchorage mechanisms (i.e., elastic fabric), ensuring high wearability and adaptability to different body anthropometries. The sensor was fabricated via fused deposition modeling and the sensitivity to strain was evaluated by performing a metrological characterization. Lastly, a pilot test on a healthy volunteer assessed its feasibility in monitoring respiratory rate and low back movements showing promising capacities.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2024 IEEE International Workshop on Metrology for Industry 4.0 and IoT, MetroInd4.0 and IoT 2024 : proceedings

  • ISBN

    979-8-3503-8583-0

  • ISSN

    2837-0864

  • e-ISSN

    2837-0872

  • Počet stran výsledku

    6

  • Strana od-do

    383-388

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    Florencie

  • Datum konání akce

    29. 5. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku