Torsional Vibration Adaptive Neural Network Fault-Tolerant Control of the Main Drive System for the Rolling Mill
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255750" target="_blank" >RIV/61989100:27240/24:10255750 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/24:10255750
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10666763" target="_blank" >https://ieeexplore.ieee.org/document/10666763</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3454642" target="_blank" >10.1109/ACCESS.2024.3454642</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Torsional Vibration Adaptive Neural Network Fault-Tolerant Control of the Main Drive System for the Rolling Mill
Popis výsledku v původním jazyce
The main drive system of the rolling mill often experiences torsional vibrations, which severely affect product quality, precision, and the service life of the transmission equipment. This paper investigates the torsional vibration suppression problem in the main drive system of the rolling mill, considering actuator faults, nonlinear friction, nonlinear damping, and model uncertainties. Based on the high-order fully actuated (HOFA) system approach, the main drive system of the rolling mill is transformed into a rolling mill main drive fully actuated system (RMMDFAS). Adaptive neural networks are introduced to address unknown uncertainties, and a continuous differentiable Gaussian error function is used to handle actuator faults. An adaptive neural network fault-tolerant control law for motor torque is proposed. The stability of the designed main drive torsional vibration system is rigorously proven, while maintaining the performance of the transformed states. Finally, the effectiveness and superiority of the proposed algorithm are verified through simulations.
Název v anglickém jazyce
Torsional Vibration Adaptive Neural Network Fault-Tolerant Control of the Main Drive System for the Rolling Mill
Popis výsledku anglicky
The main drive system of the rolling mill often experiences torsional vibrations, which severely affect product quality, precision, and the service life of the transmission equipment. This paper investigates the torsional vibration suppression problem in the main drive system of the rolling mill, considering actuator faults, nonlinear friction, nonlinear damping, and model uncertainties. Based on the high-order fully actuated (HOFA) system approach, the main drive system of the rolling mill is transformed into a rolling mill main drive fully actuated system (RMMDFAS). Adaptive neural networks are introduced to address unknown uncertainties, and a continuous differentiable Gaussian error function is used to handle actuator faults. An adaptive neural network fault-tolerant control law for motor torque is proposed. The stability of the designed main drive torsional vibration system is rigorously proven, while maintaining the performance of the transformed states. Finally, the effectiveness and superiority of the proposed algorithm are verified through simulations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
Volume: 12, 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
125585-125591
Kód UT WoS článku
001316077600001
EID výsledku v databázi Scopus
2-s2.0-85203529768