Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

AI-enhanced power quality management in distribution systems: implementing a dual-phase UPQC control with adaptive neural networks and optimized PI controllers

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255752" target="_blank" >RIV/61989100:27240/24:10255752 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27730/24:10255752

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s10462-024-10959-0" target="_blank" >https://link.springer.com/article/10.1007/s10462-024-10959-0</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10462-024-10959-0" target="_blank" >10.1007/s10462-024-10959-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    AI-enhanced power quality management in distribution systems: implementing a dual-phase UPQC control with adaptive neural networks and optimized PI controllers

  • Popis výsledku v původním jazyce

    In the realm of electrical distribution, managing power quality is critical due to its significant impact on infrastructure and customer satisfaction. Addressing issues such as voltage sags and swells, along with current and voltage harmonics, is imperative. The innovative approach proposed in this paper centers on a dual-phase control strategy using a Universal Power Quality Conditioner that integrates series and parallel compensations to rectify these disturbances simultaneously. Our methodology introduces a hybrid control scheme that employs adaptive dynamic neural networks (ADNN), a sinusoidal tracking filter (STF), and a proportional-integral (PI) controller optimized via an improved krill herd (IKH) algorithm. The first phase utilizes the ADNN-based adaptive integrated estimator for quick and accurate disturbance detection and estimation. Subsequently, the second phase employs the STF, omitting the Low Pass Filter and employing a Phase Locking Loop to generate precise reference voltages and currents for the series and parallel active filters based on dynamic load and source conditions. This advanced control mechanism not only enhances system efficacy but also reduces the need for extensive computational resources. Furthermore, the performance of both series and parallel inverters is finely tuned through a PI controller optimized with the IKH algorithm, improving the DC link voltage regulation. Our extensive testing under various conditions, including voltage imbalances and harmonic disturbances, demonstrates the robustness of the proposed solution in both transient and steady-state scenarios.

  • Název v anglickém jazyce

    AI-enhanced power quality management in distribution systems: implementing a dual-phase UPQC control with adaptive neural networks and optimized PI controllers

  • Popis výsledku anglicky

    In the realm of electrical distribution, managing power quality is critical due to its significant impact on infrastructure and customer satisfaction. Addressing issues such as voltage sags and swells, along with current and voltage harmonics, is imperative. The innovative approach proposed in this paper centers on a dual-phase control strategy using a Universal Power Quality Conditioner that integrates series and parallel compensations to rectify these disturbances simultaneously. Our methodology introduces a hybrid control scheme that employs adaptive dynamic neural networks (ADNN), a sinusoidal tracking filter (STF), and a proportional-integral (PI) controller optimized via an improved krill herd (IKH) algorithm. The first phase utilizes the ADNN-based adaptive integrated estimator for quick and accurate disturbance detection and estimation. Subsequently, the second phase employs the STF, omitting the Low Pass Filter and employing a Phase Locking Loop to generate precise reference voltages and currents for the series and parallel active filters based on dynamic load and source conditions. This advanced control mechanism not only enhances system efficacy but also reduces the need for extensive computational resources. Furthermore, the performance of both series and parallel inverters is finely tuned through a PI controller optimized with the IKH algorithm, improving the DC link voltage regulation. Our extensive testing under various conditions, including voltage imbalances and harmonic disturbances, demonstrates the robustness of the proposed solution in both transient and steady-state scenarios.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Artificial Intelligence Review

  • ISSN

    0269-2821

  • e-ISSN

    1573-7462

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    48

  • Strana od-do

    nestránkováno

  • Kód UT WoS článku

    001322719100002

  • EID výsledku v databázi Scopus

    2-s2.0-85205735756