Cooperative Satellite-Terrestrial Networks With Imperfect CSI and Multiple Jammers: Performance Analysis and Deep Learning Evaluation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256204" target="_blank" >RIV/61989100:27240/24:10256204 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/24:10256204
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10701552" target="_blank" >https://ieeexplore.ieee.org/document/10701552</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/JSYST.2024.3463715" target="_blank" >10.1109/JSYST.2024.3463715</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cooperative Satellite-Terrestrial Networks With Imperfect CSI and Multiple Jammers: Performance Analysis and Deep Learning Evaluation
Popis výsledku v původním jazyce
This article introduces novel and deep learning approaches for the security analysis of a hybrid satellite-terrestrial cooperative network. More specifically, a satellite transmits information to a ground user through multiple relays in the presence of an eavesdropper. To prevent potential eavesdropping, multiple friendly jammers are employed to disrupt the reception process of the eavesdropper by artificial noise. Within this setting, we then derive the closed-form expressions of the outage probability (OP) and secrecy outage probability (SOP) of the considered system in the presence of imperfect channel state information. Important to mention is the fact that in complex systems (e.g., with multiple jammers, multiple relays, and considering the independent but nonidentically distributed Rician nature of satellite links), analytical approaches may not be effective due to their complex mathematical derivations. As such, we develop a highly effective yet low-complexity deep learning approach to estimate the OP and SOP of the system. Through extensive Monte Carlo simulations, we evaluate the OP and SOP of the system in various settings and demonstrate the effectiveness of the proposed solutions. Interestingly, the proposed deep learning method can achieve comparable performance to that of the analytical approach.
Název v anglickém jazyce
Cooperative Satellite-Terrestrial Networks With Imperfect CSI and Multiple Jammers: Performance Analysis and Deep Learning Evaluation
Popis výsledku anglicky
This article introduces novel and deep learning approaches for the security analysis of a hybrid satellite-terrestrial cooperative network. More specifically, a satellite transmits information to a ground user through multiple relays in the presence of an eavesdropper. To prevent potential eavesdropping, multiple friendly jammers are employed to disrupt the reception process of the eavesdropper by artificial noise. Within this setting, we then derive the closed-form expressions of the outage probability (OP) and secrecy outage probability (SOP) of the considered system in the presence of imperfect channel state information. Important to mention is the fact that in complex systems (e.g., with multiple jammers, multiple relays, and considering the independent but nonidentically distributed Rician nature of satellite links), analytical approaches may not be effective due to their complex mathematical derivations. As such, we develop a highly effective yet low-complexity deep learning approach to estimate the OP and SOP of the system. Through extensive Monte Carlo simulations, we evaluate the OP and SOP of the system in various settings and demonstrate the effectiveness of the proposed solutions. Interestingly, the proposed deep learning method can achieve comparable performance to that of the analytical approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Systems Journal
ISSN
1932-8184
e-ISSN
1937-9234
Svazek periodika
18
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
2062-2073
Kód UT WoS článku
001328976800001
EID výsledku v databázi Scopus
—