Sensorless finite set predictive current control with MRAS estimation for optimized performance of standalone DFIG in wind energy systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256274" target="_blank" >RIV/61989100:27240/24:10256274 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27730/24:10256274
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2590123024018656?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2590123024018656?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rineng.2024.103622" target="_blank" >10.1016/j.rineng.2024.103622</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sensorless finite set predictive current control with MRAS estimation for optimized performance of standalone DFIG in wind energy systems
Popis výsledku v původním jazyce
This paper introduces a sensorless control strategy combining Finite-Set Predictive Current Control (FSPCC) and Model Reference Adaptive System (MRAS) estimation to enhance the performance of standalone Doubly-Fed Induction Generators (DFIG) in wind energy systems. Addressing the challenges of cost and reliability, the proposed approach eliminates mechanical speed sensors by employing MRAS for real-time rotor speed and position estimation. FSPCC predicts rotor current one step ahead (K + 1), enabling precise control, optimal switching state selection, and improved current regulation with reduced ripple. The significance of this study lies in its potential to advance standalone wind energy systems by providing a robust, efficient, and reduced cost and effective solution for sensorless operation. The proposed strategy was experimentally validated using a 3 kW DFIG coupled with a turbine emulator, connected to a three-phase resistive load, and managed via a DS1104 control board. The system was tested under diverse operational conditions, including sudden load variations and dynamic speed changes, simulating real-time wind energy scenarios. The results demonstrate exceptional robustness and adaptability, with accurate speed estimation, effective voltage regulation, stable current waveforms, and enhanced power quality. The system also exhibited improved reactive power handling, ensuring smooth transitions under fluctuating loads and mitigating power oscillations. By addressing critical challenges in standalone DFIG applications, this work highlights the importance of integrating FSPCC and MRAS as a promising control solution. The results confirm its potential to improve system stability, efficiency, and reliability, offering significant advancements in renewable energy technologies and optimizing the performance of wind energy conversion systems. Also, this combination isn't applied before in the field in can be applied in many other fields like electric vehicles, robotics, aerospace systems and marines.
Název v anglickém jazyce
Sensorless finite set predictive current control with MRAS estimation for optimized performance of standalone DFIG in wind energy systems
Popis výsledku anglicky
This paper introduces a sensorless control strategy combining Finite-Set Predictive Current Control (FSPCC) and Model Reference Adaptive System (MRAS) estimation to enhance the performance of standalone Doubly-Fed Induction Generators (DFIG) in wind energy systems. Addressing the challenges of cost and reliability, the proposed approach eliminates mechanical speed sensors by employing MRAS for real-time rotor speed and position estimation. FSPCC predicts rotor current one step ahead (K + 1), enabling precise control, optimal switching state selection, and improved current regulation with reduced ripple. The significance of this study lies in its potential to advance standalone wind energy systems by providing a robust, efficient, and reduced cost and effective solution for sensorless operation. The proposed strategy was experimentally validated using a 3 kW DFIG coupled with a turbine emulator, connected to a three-phase resistive load, and managed via a DS1104 control board. The system was tested under diverse operational conditions, including sudden load variations and dynamic speed changes, simulating real-time wind energy scenarios. The results demonstrate exceptional robustness and adaptability, with accurate speed estimation, effective voltage regulation, stable current waveforms, and enhanced power quality. The system also exhibited improved reactive power handling, ensuring smooth transitions under fluctuating loads and mitigating power oscillations. By addressing critical challenges in standalone DFIG applications, this work highlights the importance of integrating FSPCC and MRAS as a promising control solution. The results confirm its potential to improve system stability, efficiency, and reliability, offering significant advancements in renewable energy technologies and optimizing the performance of wind energy conversion systems. Also, this combination isn't applied before in the field in can be applied in many other fields like electric vehicles, robotics, aerospace systems and marines.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Results in Engineering
ISSN
2590-1230
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
December 2024
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
1-17
Kód UT WoS článku
001386053500001
EID výsledku v databázi Scopus
2-s2.0-85211473195