Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Sensorless finite set predictive current control with MRAS estimation for optimized performance of standalone DFIG in wind energy systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256274" target="_blank" >RIV/61989100:27240/24:10256274 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989100:27730/24:10256274

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2590123024018656?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2590123024018656?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.rineng.2024.103622" target="_blank" >10.1016/j.rineng.2024.103622</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sensorless finite set predictive current control with MRAS estimation for optimized performance of standalone DFIG in wind energy systems

  • Popis výsledku v původním jazyce

    This paper introduces a sensorless control strategy combining Finite-Set Predictive Current Control (FSPCC) and Model Reference Adaptive System (MRAS) estimation to enhance the performance of standalone Doubly-Fed Induction Generators (DFIG) in wind energy systems. Addressing the challenges of cost and reliability, the proposed approach eliminates mechanical speed sensors by employing MRAS for real-time rotor speed and position estimation. FSPCC predicts rotor current one step ahead (K + 1), enabling precise control, optimal switching state selection, and improved current regulation with reduced ripple. The significance of this study lies in its potential to advance standalone wind energy systems by providing a robust, efficient, and reduced cost and effective solution for sensorless operation. The proposed strategy was experimentally validated using a 3 kW DFIG coupled with a turbine emulator, connected to a three-phase resistive load, and managed via a DS1104 control board. The system was tested under diverse operational conditions, including sudden load variations and dynamic speed changes, simulating real-time wind energy scenarios. The results demonstrate exceptional robustness and adaptability, with accurate speed estimation, effective voltage regulation, stable current waveforms, and enhanced power quality. The system also exhibited improved reactive power handling, ensuring smooth transitions under fluctuating loads and mitigating power oscillations. By addressing critical challenges in standalone DFIG applications, this work highlights the importance of integrating FSPCC and MRAS as a promising control solution. The results confirm its potential to improve system stability, efficiency, and reliability, offering significant advancements in renewable energy technologies and optimizing the performance of wind energy conversion systems. Also, this combination isn&apos;t applied before in the field in can be applied in many other fields like electric vehicles, robotics, aerospace systems and marines.

  • Název v anglickém jazyce

    Sensorless finite set predictive current control with MRAS estimation for optimized performance of standalone DFIG in wind energy systems

  • Popis výsledku anglicky

    This paper introduces a sensorless control strategy combining Finite-Set Predictive Current Control (FSPCC) and Model Reference Adaptive System (MRAS) estimation to enhance the performance of standalone Doubly-Fed Induction Generators (DFIG) in wind energy systems. Addressing the challenges of cost and reliability, the proposed approach eliminates mechanical speed sensors by employing MRAS for real-time rotor speed and position estimation. FSPCC predicts rotor current one step ahead (K + 1), enabling precise control, optimal switching state selection, and improved current regulation with reduced ripple. The significance of this study lies in its potential to advance standalone wind energy systems by providing a robust, efficient, and reduced cost and effective solution for sensorless operation. The proposed strategy was experimentally validated using a 3 kW DFIG coupled with a turbine emulator, connected to a three-phase resistive load, and managed via a DS1104 control board. The system was tested under diverse operational conditions, including sudden load variations and dynamic speed changes, simulating real-time wind energy scenarios. The results demonstrate exceptional robustness and adaptability, with accurate speed estimation, effective voltage regulation, stable current waveforms, and enhanced power quality. The system also exhibited improved reactive power handling, ensuring smooth transitions under fluctuating loads and mitigating power oscillations. By addressing critical challenges in standalone DFIG applications, this work highlights the importance of integrating FSPCC and MRAS as a promising control solution. The results confirm its potential to improve system stability, efficiency, and reliability, offering significant advancements in renewable energy technologies and optimizing the performance of wind energy conversion systems. Also, this combination isn&apos;t applied before in the field in can be applied in many other fields like electric vehicles, robotics, aerospace systems and marines.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20200 - Electrical engineering, Electronic engineering, Information engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TN02000025" target="_blank" >TN02000025: Národní centrum pro energetiku II</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Results in Engineering

  • ISSN

    2590-1230

  • e-ISSN

  • Svazek periodika

    24

  • Číslo periodika v rámci svazku

    December 2024

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    17

  • Strana od-do

    1-17

  • Kód UT WoS článku

    001386053500001

  • EID výsledku v databázi Scopus

    2-s2.0-85211473195