Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimizing AVR system performance via a novel cascaded RPIDD2-FOPI controller and QWGBO approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256321" target="_blank" >RIV/61989100:27240/24:10256321 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299009" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0299009" target="_blank" >10.1371/journal.pone.0299009</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimizing AVR system performance via a novel cascaded RPIDD2-FOPI controller and QWGBO approach

  • Popis výsledku v původním jazyce

    Maintaining stable voltage levels is essential for power systems&apos; efficiency and reliability. Voltage fluctuations during load changes can lead to equipment damage and costly disruptions. Automatic voltage regulators (AVRs) are traditionally used to address this issue, regulating generator terminal voltage. Despite progress in control methodologies, challenges persist, including robustness and response time limitations. Therefore, this study introduces a novel approach to AVR control, aiming to enhance robustness and efficiency. A custom optimizer, the quadratic wavelet-enhanced gradient-based optimization (QWGBO) algorithm, is developed. QWGBO refines the gradient-based optimization (GBO) by introducing exploration and exploitation improvements. The algorithm integrates quadratic interpolation mutation and wavelet mutation strategy to enhance search efficiency. Extensive tests using benchmark functions demonstrate the QWGBO&apos;s effectiveness in optimization. Comparative assessments against existing optimization algorithms and recent techniques confirm QWGBO&apos;s superior performance. In AVR control, QWGBO is coupled with a cascaded real proportional-integral-derivative with second order derivative (RPIDD2) and fractional-order proportional-integral (FOPI) controller, aiming for precision, stability, and quick response. The algorithm&apos;s performance is verified through rigorous simulations, emphasizing its effectiveness in optimizing complex engineering problems. Comparative analyses highlight QWGBO&apos;s superiority over existing algorithms, positioning it as a promising solution for optimizing power system control and contributing to the advancement of robust and efficient power systems.

  • Název v anglickém jazyce

    Optimizing AVR system performance via a novel cascaded RPIDD2-FOPI controller and QWGBO approach

  • Popis výsledku anglicky

    Maintaining stable voltage levels is essential for power systems&apos; efficiency and reliability. Voltage fluctuations during load changes can lead to equipment damage and costly disruptions. Automatic voltage regulators (AVRs) are traditionally used to address this issue, regulating generator terminal voltage. Despite progress in control methodologies, challenges persist, including robustness and response time limitations. Therefore, this study introduces a novel approach to AVR control, aiming to enhance robustness and efficiency. A custom optimizer, the quadratic wavelet-enhanced gradient-based optimization (QWGBO) algorithm, is developed. QWGBO refines the gradient-based optimization (GBO) by introducing exploration and exploitation improvements. The algorithm integrates quadratic interpolation mutation and wavelet mutation strategy to enhance search efficiency. Extensive tests using benchmark functions demonstrate the QWGBO&apos;s effectiveness in optimization. Comparative assessments against existing optimization algorithms and recent techniques confirm QWGBO&apos;s superior performance. In AVR control, QWGBO is coupled with a cascaded real proportional-integral-derivative with second order derivative (RPIDD2) and fractional-order proportional-integral (FOPI) controller, aiming for precision, stability, and quick response. The algorithm&apos;s performance is verified through rigorous simulations, emphasizing its effectiveness in optimizing complex engineering problems. Comparative analyses highlight QWGBO&apos;s superiority over existing algorithms, positioning it as a promising solution for optimizing power system control and contributing to the advancement of robust and efficient power systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PLoS One

  • ISSN

    1932-6203

  • e-ISSN

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    30

  • Strana od-do

  • Kód UT WoS článku

    001233936700068

  • EID výsledku v databázi Scopus