A novel Discrete Artificial Bee Colony algorithm combined with adaptive filtering to extract Fetal Electrocardiogram signals
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257039" target="_blank" >RIV/61989100:27240/24:10257039 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417424000381?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417424000381?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2024.123173" target="_blank" >10.1016/j.eswa.2024.123173</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel Discrete Artificial Bee Colony algorithm combined with adaptive filtering to extract Fetal Electrocardiogram signals
Popis výsledku v původním jazyce
The Fetal Electrocardiogram (FECG) signal plays a crucial role in monitoring the health of the fetus, but there are numerous challenges in eliminating the maternal thorax signal and reducing noise interference. This paper proposes a novel objective function that combines a Least Mean Squares (LMS) adaptive filter with a heuristic algorithms to enhance the quality of the extracted FECG signal. To achieve better results, we introduce the Discrete Artificial Bee Colony (DABC) algorithm with a new initialization strategy, a random wavelet basic function strategy, and Gaussian distribution. These improvements enhance global search capabilities and ensure a faster convergence rate. The application of heuristic algorithms can reduce noise signals and provides clearer and more accurate results compared to the traditional LMS filter. Furthermore, the effectiveness of this innovative algorithm is compared with other widely used heuristic algorithms. The experiment results demonstrate that the novel algorithm significantly enhances performance by up to 8% compared to other conventional extraction methods in some indicators. © 2024 Elsevier Ltd
Název v anglickém jazyce
A novel Discrete Artificial Bee Colony algorithm combined with adaptive filtering to extract Fetal Electrocardiogram signals
Popis výsledku anglicky
The Fetal Electrocardiogram (FECG) signal plays a crucial role in monitoring the health of the fetus, but there are numerous challenges in eliminating the maternal thorax signal and reducing noise interference. This paper proposes a novel objective function that combines a Least Mean Squares (LMS) adaptive filter with a heuristic algorithms to enhance the quality of the extracted FECG signal. To achieve better results, we introduce the Discrete Artificial Bee Colony (DABC) algorithm with a new initialization strategy, a random wavelet basic function strategy, and Gaussian distribution. These improvements enhance global search capabilities and ensure a faster convergence rate. The application of heuristic algorithms can reduce noise signals and provides clearer and more accurate results compared to the traditional LMS filter. Furthermore, the effectiveness of this innovative algorithm is compared with other widely used heuristic algorithms. The experiment results demonstrate that the novel algorithm significantly enhances performance by up to 8% compared to other conventional extraction methods in some indicators. © 2024 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
247
Číslo periodika v rámci svazku
Aug
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
001173710600001
EID výsledku v databázi Scopus
2-s2.0-85184054626