Particle Swarm Optimization and Differential Evolution for Derangement Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257261" target="_blank" >RIV/61989100:27240/24:10257261 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/abstract/document/10871873" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10871873</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICNGN63705.2024.10871873" target="_blank" >10.1109/ICNGN63705.2024.10871873</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Particle Swarm Optimization and Differential Evolution for Derangement Problems
Popis výsledku v původním jazyce
Combinatorial optimization involves solving problems that can be represented by combinatorial objects. Due to the complexity of these problems, exact solutions are difficult to obtain. Consequently, nature-inspired metaheuristics have been widely used to provide approximate solutions. While nature-inspired approaches have been extensively applied to general permutation and combination problems, there is limited exploration in solving constrained permutation problems, such as derangements. This paper investigates the use of Particle Swarm Optimization (PSO) and Differential Evolution (DE) to solve derangement problems. We introduce a novel, efficient algorithm that transforms arbitrary permutations into derangements and analyze its impact on the effectiveness of PSO and DE in solving these problems. The results contribute to the application of nature-inspired metaheuristics in constrained combinatorial optimization. Finally, we note the potential of constrained permutation problems to test nature-inspired metaheuristics. ©2024 IEEE.
Název v anglickém jazyce
Particle Swarm Optimization and Differential Evolution for Derangement Problems
Popis výsledku anglicky
Combinatorial optimization involves solving problems that can be represented by combinatorial objects. Due to the complexity of these problems, exact solutions are difficult to obtain. Consequently, nature-inspired metaheuristics have been widely used to provide approximate solutions. While nature-inspired approaches have been extensively applied to general permutation and combination problems, there is limited exploration in solving constrained permutation problems, such as derangements. This paper investigates the use of Particle Swarm Optimization (PSO) and Differential Evolution (DE) to solve derangement problems. We introduce a novel, efficient algorithm that transforms arbitrary permutations into derangements and analyze its impact on the effectiveness of PSO and DE in solving these problems. The results contribute to the application of nature-inspired metaheuristics in constrained combinatorial optimization. Finally, we note the potential of constrained permutation problems to test nature-inspired metaheuristics. ©2024 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-34873K" target="_blank" >GF22-34873K: Vícekriteriální optimalizace s omezeními pomocí analýzy potenciálních ploch</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of The 3rd International Conference on Intelligent Computing and Next Generation Networks, ICNGN 2024 : November 23-25, 2024, Bangkok, Thailand
ISBN
979-8-3315-2923-9
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Bangkok
Datum konání akce
23. 11. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—