Mapping and Monitoring of Socially Excluded Localities in Ostrava City
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F10%3A86075128" target="_blank" >RIV/61989100:27350/10:86075128 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mapping and Monitoring of Socially Excluded Localities in Ostrava City
Popis výsledku v původním jazyce
Monitoring of socially excluded localities requires data sources with a sufficient frequency of data flow to quickly detect the changes and allow taking appropriate measures in time. Detection of endangered localities in Ostrava city was based on data records from 2007 and 2009 using both quadrat and kernel methods. Evaluated factors include a share of registered unemployed to inhabitants in productive age, rate of unemployment for young people, for older people, share of unemployed with basic education, share of health-handicapped unemployed and share of long-term unemployed persons. The study reveals differences among localities. The high level of UBE seems to be a typical symptom of gypsy communities. The comparison of the quadrat and kernel methodsindicates more advantages for the kernel type of data processing and aggregation. The identified localities were compared with a social typology of the city and the evidence of minority ethnic based localities.
Název v anglickém jazyce
Mapping and Monitoring of Socially Excluded Localities in Ostrava City
Popis výsledku anglicky
Monitoring of socially excluded localities requires data sources with a sufficient frequency of data flow to quickly detect the changes and allow taking appropriate measures in time. Detection of endangered localities in Ostrava city was based on data records from 2007 and 2009 using both quadrat and kernel methods. Evaluated factors include a share of registered unemployed to inhabitants in productive age, rate of unemployment for young people, for older people, share of unemployed with basic education, share of health-handicapped unemployed and share of long-term unemployed persons. The study reveals differences among localities. The high level of UBE seems to be a typical symptom of gypsy communities. The comparison of the quadrat and kernel methodsindicates more advantages for the kernel type of data processing and aggregation. The identified localities were compared with a social typology of the city and the evidence of minority ethnic based localities.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
AO - Sociologie, demografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA403%2F09%2F1720" target="_blank" >GA403/09/1720: Industriální město v post-industriální společnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advances in Geoinformation Technologies 2010.
ISBN
978-80-248-2145-0
Počet stran výsledku
15
Strana od-do
—
Počet stran knihy
190
Název nakladatele
VŠB-TUO
Místo vydání
Ostrava
Kód UT WoS kapitoly
—