An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F13%3A86088911" target="_blank" >RIV/61989100:27350/13:86088911 - isvavai.cz</a>
Výsledek na webu
<a href="http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=Q1w2CFbxYOGhCvgPPkg&page=1&doc=4" target="_blank" >http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=3&SID=Q1w2CFbxYOGhCvgPPkg&page=1&doc=4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12040-013-0281-3" target="_blank" >10.1007/s12040-013-0281-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ
Popis výsledku v původním jazyce
The paper presented herein compares and discusses the use of bivariate, multivariate and soft computing techniques for collapse susceptibility modelling. Conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) models representing the bivariate, multivariate and soft computing techniques were used in GIS based collapse susceptibility mapping in an area from Sivas basin (Turkey). Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index (TWI), stream power index (SPI), Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from the models, and they were then compared by means of their validations. However,
Název v anglickém jazyce
An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ
Popis výsledku anglicky
The paper presented herein compares and discusses the use of bivariate, multivariate and soft computing techniques for collapse susceptibility modelling. Conditional probability (CP), logistic regression (LR) and artificial neural networks (ANN) models representing the bivariate, multivariate and soft computing techniques were used in GIS based collapse susceptibility mapping in an area from Sivas basin (Turkey). Collapse-related factors, directly or indirectly related to the causes of collapse occurrence, such as distance from faults, slope angle and aspect, topographical elevation, distance from drainage, topographic wetness index (TWI), stream power index (SPI), Normalized Difference Vegetation Index (NDVI) by means of vegetation cover, distance from roads and settlements were used in the collapse susceptibility analyses. In the last stage of the analyses, collapse susceptibility maps were produced from the models, and they were then compared by means of their validations. However,
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JN - Stavebnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Earth System Science
ISSN
0253-4126
e-ISSN
—
Svazek periodika
122
Číslo periodika v rámci svazku
APR 2013
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
371-388
Kód UT WoS článku
000317606500008
EID výsledku v databázi Scopus
—