Forecasting financial performance for quarries. Geoscience Engineering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F14%3A86091343" target="_blank" >RIV/61989100:27350/14:86091343 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.2478/gse-2014-0012" target="_blank" >http://dx.doi.org/10.2478/gse-2014-0012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/gse-2014-0012" target="_blank" >10.2478/gse-2014-0012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting financial performance for quarries. Geoscience Engineering
Popis výsledku v původním jazyce
Linear and quadratic discriminate analyses and a logistic regression analysis were applied to a sample file of 233 annual data from 3 countries for a period of 2008-2012 concerning quarries extracting building materials. These methods provided for distributing the sample file quarries into two classes of profitable and loss-making enterprises. Their financial performance had been known, which enabled to assess the classification accuracy of individual method applications. The average classification accuracy was about 86%. The linear discriminate analysis made possible to identify the most influential discriminators that contributed to the classification into the specific groups. In case of our investigation, prices per production unit, direct variablecosts, and ratio of fixed costs to total costs were the most important factors of influence.
Název v anglickém jazyce
Forecasting financial performance for quarries. Geoscience Engineering
Popis výsledku anglicky
Linear and quadratic discriminate analyses and a logistic regression analysis were applied to a sample file of 233 annual data from 3 countries for a period of 2008-2012 concerning quarries extracting building materials. These methods provided for distributing the sample file quarries into two classes of profitable and loss-making enterprises. Their financial performance had been known, which enabled to assess the classification accuracy of individual method applications. The average classification accuracy was about 86%. The linear discriminate analysis made possible to identify the most influential discriminators that contributed to the classification into the specific groups. In case of our investigation, prices per production unit, direct variablecosts, and ratio of fixed costs to total costs were the most important factors of influence.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
GeoScience Engineering
ISSN
1802-5420
e-ISSN
—
Svazek periodika
LX
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—