Deep Neural Network for Predicting Diabetic Retinopathy from Risk Factors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F20%3A10245344" target="_blank" >RIV/61989100:27350/20:10245344 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/8/9/1620" target="_blank" >https://www.mdpi.com/2227-7390/8/9/1620</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8091620" target="_blank" >10.3390/math8091620</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep Neural Network for Predicting Diabetic Retinopathy from Risk Factors
Popis výsledku v původním jazyce
Extracting information from individual risk factors provides an effective way to identify diabetes risk and associated complications, such as retinopathy, at an early stage. Deep learning and machine learning algorithms are being utilized to extract information from individual risk factors to improve early-stage diagnosis. This study proposes a deep neural network (DNN) combined with recursive feature elimination (RFE) to provide early prediction of diabetic retinopathy (DR) based on individual risk factors. The proposed model uses RFE to remove irrelevant features and DNN to classify the diseases. A publicly available dataset was utilized to predict DR during initial stages, for the proposed and several current best-practice models. The proposed model achieved 82.033% prediction accuracy, which was a significantly better performance than the current models. Thus, important risk factors for retinopathy can be successfully extracted using RFE. In addition, to evaluate the proposed prediction model robustness and generalization, we compared it with other machine learning models and datasets (nephropathy and hypertension-diabetes). The proposed prediction model will help improve early-stage retinopathy diagnosis based on individual risk factors.
Název v anglickém jazyce
Deep Neural Network for Predicting Diabetic Retinopathy from Risk Factors
Popis výsledku anglicky
Extracting information from individual risk factors provides an effective way to identify diabetes risk and associated complications, such as retinopathy, at an early stage. Deep learning and machine learning algorithms are being utilized to extract information from individual risk factors to improve early-stage diagnosis. This study proposes a deep neural network (DNN) combined with recursive feature elimination (RFE) to provide early prediction of diabetic retinopathy (DR) based on individual risk factors. The proposed model uses RFE to remove irrelevant features and DNN to classify the diseases. A publicly available dataset was utilized to predict DR during initial stages, for the proposed and several current best-practice models. The proposed model achieved 82.033% prediction accuracy, which was a significantly better performance than the current models. Thus, important risk factors for retinopathy can be successfully extracted using RFE. In addition, to evaluate the proposed prediction model robustness and generalization, we compared it with other machine learning models and datasets (nephropathy and hypertension-diabetes). The proposed prediction model will help improve early-stage retinopathy diagnosis based on individual risk factors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LTE117005" target="_blank" >LTE117005: U Health - Technologie Auto-ID a Internetu věcí pro zvýšení kvality zdravotnických služeb</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000580113300001
EID výsledku v databázi Scopus
2-s2.0-85091360487