Use of different types of biosorbents to remove cr (Vi) from aqueous solution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F21%3A10247310" target="_blank" >RIV/61989100:27350/21:10247310 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2075-1729/11/3/240/htm" target="_blank" >https://www.mdpi.com/2075-1729/11/3/240/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/life11030240" target="_blank" >10.3390/life11030240</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Use of different types of biosorbents to remove cr (Vi) from aqueous solution
Popis výsledku v původním jazyce
This article summarizes the results of a research study that was focused on the possibility of removing Cr (VI) from aqueous solution, using low-cost waste biomaterial in a batch mode. A set of seven biosorbents was used: Fomitopsis pinicola, a mixture of cones, peach stones, apricot stones, Juglans regia shells, orange peels, and Merino sheep wool. Three grain fractions (fr. 1/2, fr. 0.5/1.0, and fr. 0/0.5 mm) of biosorbents were studied. The aim was to find the most suitable biosorbent that can be tested with real samples. The influence of other factors on the course of biosorption was studied as well (chemical activation of the biosorbent, pH value, rotation speed during mixing , temperature, and the influence of biosorbent concentration). The use of chemical activation and adjustment of the pH to 1.1 to 2.0 make it possible to increase their sorption capacity and, for some biosorbents, to shorten the exposure times. Two kinetic models were used for the analysis of the experimental data, to explain the mechanism of adsorption and its possible speed control steps: pseudo-first and pseudo-second-order. The pseudo-second-order kinetic model seems to be the most suitable for the description of the experimental data. The thermodynamic parameters suggest that the biosorption was endothermic and spontaneous. In the biosorption equilibrium study, the adsorption data were described by using Langmuir and Freundlich adsorption isotherms. The Langmuir model was applicable to describe the adsorption data of all biosorbents. Both models are suitable for chemically treated sheep fleece and peach stones. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Název v anglickém jazyce
Use of different types of biosorbents to remove cr (Vi) from aqueous solution
Popis výsledku anglicky
This article summarizes the results of a research study that was focused on the possibility of removing Cr (VI) from aqueous solution, using low-cost waste biomaterial in a batch mode. A set of seven biosorbents was used: Fomitopsis pinicola, a mixture of cones, peach stones, apricot stones, Juglans regia shells, orange peels, and Merino sheep wool. Three grain fractions (fr. 1/2, fr. 0.5/1.0, and fr. 0/0.5 mm) of biosorbents were studied. The aim was to find the most suitable biosorbent that can be tested with real samples. The influence of other factors on the course of biosorption was studied as well (chemical activation of the biosorbent, pH value, rotation speed during mixing , temperature, and the influence of biosorbent concentration). The use of chemical activation and adjustment of the pH to 1.1 to 2.0 make it possible to increase their sorption capacity and, for some biosorbents, to shorten the exposure times. Two kinetic models were used for the analysis of the experimental data, to explain the mechanism of adsorption and its possible speed control steps: pseudo-first and pseudo-second-order. The pseudo-second-order kinetic model seems to be the most suitable for the description of the experimental data. The thermodynamic parameters suggest that the biosorption was endothermic and spontaneous. In the biosorption equilibrium study, the adsorption data were described by using Langmuir and Freundlich adsorption isotherms. The Langmuir model was applicable to describe the adsorption data of all biosorbents. Both models are suitable for chemically treated sheep fleece and peach stones. (C) 2021 by the authors. Licensee MDPI, Basel, Switzerland.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Life
ISSN
2075-1729
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
—
Kód UT WoS článku
000633831000001
EID výsledku v databázi Scopus
2-s2.0-85103254490