Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Shock and Vibration of Rainfall on Rotational Landslide and Analysis of Its Deformation Characteristics

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F21%3A10248450" target="_blank" >RIV/61989100:27350/21:10248450 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.hindawi.com/journals/geofluids/2021/4119414/" target="_blank" >https://www.hindawi.com/journals/geofluids/2021/4119414/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1155/2021/4119414" target="_blank" >10.1155/2021/4119414</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Shock and Vibration of Rainfall on Rotational Landslide and Analysis of Its Deformation Characteristics

  • Popis výsledku v původním jazyce

    Earthquake, flood, human activity, and rainfall are some of the trigger factors leading to landslides. Landslide monitoring data analysis indicates the deformation characteristics of landslides and helps to reduce the threat of landslide disasters. There are monitoring methods that enable efficient acquisition of real-time data to facilitate comprehensive research on landslides. However, it is challenging to analyze large amounts of monitoring data with problems like missing data and outlier data during data collection and transfer. These problems also hinder practical analysis and determination concerning the uncertain monitoring data. This work analyzes and processes the deformation characteristics of a rainfall-induced rotational landslide based on exploratory data analysis techniques. First, we found that the moving average denoising method is better than the polynomial fitting method for the repair and fitting of monitoring data. Besides, the exploratory data analysis of the Global Navigation Satellite System (GNSS) monitoring data reveals that the distribution of GNSS monitoring points has a positive correlation with the deformational characteristics of a rotational landslide. Our findings in the subsequent case study indicate that rainfalls are the primary trigger of the Zhutoushan landslide, Jiangsu Province, China. Therefore, this method provides support for the analysis of rotational landslides and more useful landslide monitoring information.&lt;/p&gt;

  • Název v anglickém jazyce

    Shock and Vibration of Rainfall on Rotational Landslide and Analysis of Its Deformation Characteristics

  • Popis výsledku anglicky

    Earthquake, flood, human activity, and rainfall are some of the trigger factors leading to landslides. Landslide monitoring data analysis indicates the deformation characteristics of landslides and helps to reduce the threat of landslide disasters. There are monitoring methods that enable efficient acquisition of real-time data to facilitate comprehensive research on landslides. However, it is challenging to analyze large amounts of monitoring data with problems like missing data and outlier data during data collection and transfer. These problems also hinder practical analysis and determination concerning the uncertain monitoring data. This work analyzes and processes the deformation characteristics of a rainfall-induced rotational landslide based on exploratory data analysis techniques. First, we found that the moving average denoising method is better than the polynomial fitting method for the repair and fitting of monitoring data. Besides, the exploratory data analysis of the Global Navigation Satellite System (GNSS) monitoring data reveals that the distribution of GNSS monitoring points has a positive correlation with the deformational characteristics of a rotational landslide. Our findings in the subsequent case study indicate that rainfalls are the primary trigger of the Zhutoushan landslide, Jiangsu Province, China. Therefore, this method provides support for the analysis of rotational landslides and more useful landslide monitoring information.&lt;/p&gt;

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10500 - Earth and related environmental sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Geofluids

  • ISSN

    1468-8115

  • e-ISSN

  • Svazek periodika

    2021

  • Číslo periodika v rámci svazku

    11. 10. 2021

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    000713518700002

  • EID výsledku v databázi Scopus

    2-s2.0-85118214806