Maximizing the electrochemical performance of supercapacitor electrodes from plastic waste
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F23%3A10252965" target="_blank" >RIV/61989100:27350/23:10252965 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/23:73620076 RIV/61989592:15640/23:73620076 RIV/61989100:27360/23:10252965 RIV/61989100:27740/23:10252965
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352152X23020571" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352152X23020571</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.est.2023.108660" target="_blank" >10.1016/j.est.2023.108660</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Maximizing the electrochemical performance of supercapacitor electrodes from plastic waste
Popis výsledku v původním jazyce
The management of the increasing volume of plastic waste has become a key challenge for society. A promising strategy now consists in the transformation of plastic waste into high-value materials that can be utilized in energy storage devices such as batteries and supercapacitors. In this study, we demonstrate a two-step procedure, involving pyrolysis, followed by chemical activation that will convert common plastic waste into activated carbons (ACs). This technique makes ACs suitable for supercapacitor electrode materials. Further, the electrochemical performance of ACs is outstanding in terms of capacitance, energy density, and cycling stability. Besides the well-established parameters, including a specific surface area and micropore volume, we found that other critical factors such as polymer glass transition temperature, polymer-activating agent miscibility, activating agent (K2CO3):AC ratio, and AC water dispersion stability also play a crucial role in determining the supercapacitors performance. Controlling these parameters, we obtained ACs as supercapacitor electrodes from a range of plastic waste materials with a competitive electrochemical performance. Specifically, the ACs exhibited a specific capacitance of 220 F gMINUS SIGN 1 (at a current density of 1 A gMINUS SIGN 1), energy and power densities of 61.1 Wh kgMINUS SIGN 1 and 36.9 kW kgMINUS SIGN 1, respectively, and excellent cycling stability (95 % retention after 30,000 cycles). Our findings provide a pathway towards transforming plastic waste into valuable electrode materials for supercapacitors.
Název v anglickém jazyce
Maximizing the electrochemical performance of supercapacitor electrodes from plastic waste
Popis výsledku anglicky
The management of the increasing volume of plastic waste has become a key challenge for society. A promising strategy now consists in the transformation of plastic waste into high-value materials that can be utilized in energy storage devices such as batteries and supercapacitors. In this study, we demonstrate a two-step procedure, involving pyrolysis, followed by chemical activation that will convert common plastic waste into activated carbons (ACs). This technique makes ACs suitable for supercapacitor electrode materials. Further, the electrochemical performance of ACs is outstanding in terms of capacitance, energy density, and cycling stability. Besides the well-established parameters, including a specific surface area and micropore volume, we found that other critical factors such as polymer glass transition temperature, polymer-activating agent miscibility, activating agent (K2CO3):AC ratio, and AC water dispersion stability also play a crucial role in determining the supercapacitors performance. Controlling these parameters, we obtained ACs as supercapacitor electrodes from a range of plastic waste materials with a competitive electrochemical performance. Specifically, the ACs exhibited a specific capacitance of 220 F gMINUS SIGN 1 (at a current density of 1 A gMINUS SIGN 1), energy and power densities of 61.1 Wh kgMINUS SIGN 1 and 36.9 kW kgMINUS SIGN 1, respectively, and excellent cycling stability (95 % retention after 30,000 cycles). Our findings provide a pathway towards transforming plastic waste into valuable electrode materials for supercapacitors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20700 - Environmental engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Energy Storage
ISSN
2352-152X
e-ISSN
2352-1538
Svazek periodika
72
Číslo periodika v rámci svazku
NOV 30 2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
001059381800001
EID výsledku v databázi Scopus
2-s2.0-85168795445