A Tree Segmentation Algorithm for Airborne Light Detection and Ranging Data Based on Graph Theory and Clustering
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F24%3A10255102" target="_blank" >RIV/61989100:27350/24:10255102 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43410/24:43925507
Výsledek na webu
<a href="https://www.mdpi.com/1999-4907/15/7/1111" target="_blank" >https://www.mdpi.com/1999-4907/15/7/1111</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/f15071111" target="_blank" >10.3390/f15071111</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Tree Segmentation Algorithm for Airborne Light Detection and Ranging Data Based on Graph Theory and Clustering
Popis výsledku v původním jazyce
This paper presents a single tree segmentation method applied to 3D point cloud data acquired with a LiDAR scanner mounted on an unmanned aerial vehicle (UAV). The method itself is based on clustering methods and graph theory and uses only the spatial properties of points. Firstly, the point cloud is reduced to clusters with DBSCAN. Those clusters are connected to a 3D graph, and then graph partitioning and further refinements are applied to obtain the final segments. Multiple datasets were acquired for two test sites in the Czech Republic which are covered by commercial forest to evaluate the influence of laser scanning parameters and forest characteristics on segmentation results. The accuracy of segmentation was compared with manual labels collected on top of the orthophoto image and reached between 82 and 93% depending on the test site and laser scanning parameters. Additionally, an area-based approach was employed for validation using field-measured data, where the distribution of tree heights in plots was analyzed.
Název v anglickém jazyce
A Tree Segmentation Algorithm for Airborne Light Detection and Ranging Data Based on Graph Theory and Clustering
Popis výsledku anglicky
This paper presents a single tree segmentation method applied to 3D point cloud data acquired with a LiDAR scanner mounted on an unmanned aerial vehicle (UAV). The method itself is based on clustering methods and graph theory and uses only the spatial properties of points. Firstly, the point cloud is reduced to clusters with DBSCAN. Those clusters are connected to a 3D graph, and then graph partitioning and further refinements are applied to obtain the final segments. Multiple datasets were acquired for two test sites in the Czech Republic which are covered by commercial forest to evaluate the influence of laser scanning parameters and forest characteristics on segmentation results. The accuracy of segmentation was compared with manual labels collected on top of the orthophoto image and reached between 82 and 93% depending on the test site and laser scanning parameters. Additionally, an area-based approach was employed for validation using field-measured data, where the distribution of tree heights in plots was analyzed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10500 - Earth and related environmental sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Forests
ISSN
1999-4907
e-ISSN
1999-4907
Svazek periodika
15
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
001277666400001
EID výsledku v databázi Scopus
2-s2.0-85199630881