Content Based X-ray Image Analysis of Aluminium Castings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F11%3A86080839" target="_blank" >RIV/61989100:27360/11:86080839 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1504/IJCMSSE.2011.042820" target="_blank" >http://dx.doi.org/10.1504/IJCMSSE.2011.042820</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1504/IJCMSSE.2011.042820" target="_blank" >10.1504/IJCMSSE.2011.042820</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Content Based X-ray Image Analysis of Aluminium Castings
Popis výsledku v původním jazyce
The X-ray digital images of aluminium castings containing different microstructure defects were characterized by feature vectors composed from i) first-order statistics, ii) singular values and iii) second-order statistics calculated from Grey Level Co-occurrence Matrices (GLCM). The most suitable features were found by means of the Ward?s clustering method. The X-ray images characterised by the first-order statistics, such as 1st to 6th statistical moments and entropy, were portioned in 2 main clusterswith efficiency of 90 %. Consequently, using the 6 statistical moments and entropy, aluminium castings were sorted according to their quality in comparison with one casting of no observable defects. Their similarity was expressed measured by the Euclidean distance (ED). At ED = 5 the quality aluminium castings were effectively separated from the defective ones. This image analysis approach can be simply implemented into the automatic quality control of metallurgical processes and could
Název v anglickém jazyce
Content Based X-ray Image Analysis of Aluminium Castings
Popis výsledku anglicky
The X-ray digital images of aluminium castings containing different microstructure defects were characterized by feature vectors composed from i) first-order statistics, ii) singular values and iii) second-order statistics calculated from Grey Level Co-occurrence Matrices (GLCM). The most suitable features were found by means of the Ward?s clustering method. The X-ray images characterised by the first-order statistics, such as 1st to 6th statistical moments and entropy, were portioned in 2 main clusterswith efficiency of 90 %. Consequently, using the 6 statistical moments and entropy, aluminium castings were sorted according to their quality in comparison with one casting of no observable defects. Their similarity was expressed measured by the Euclidean distance (ED). At ED = 5 the quality aluminium castings were effectively separated from the defective ones. This image analysis approach can be simply implemented into the automatic quality control of metallurgical processes and could
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JG - Hutnictví, kovové materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED0040%2F01%2F01" target="_blank" >ED0040/01/01: Regionální materiálově technologické výzkumné centrum</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal Computational Materials Science and Surface Engineering
ISSN
1753-3465
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
219-231
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—