Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Processing of Titanium and Titanium Alloys by Forming

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F11%3A86081161" target="_blank" >RIV/61989100:27360/11:86081161 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Processing of Titanium and Titanium Alloys by Forming

  • Popis výsledku v původním jazyce

    Depending on the predominant phase or phases in their microstructure, titanium alloys are categorized as alpha, alpha-beta, and beta. This natural grouping not only reflects basic titanium production metallurgy, but it also indicates general properties specific for each type. The alpha phase in pure titanium is characterized by a hexagonal close-packed crystalline structure that remains stable from room temperature to approximately 881°C. The beta phase in pure titanium has a body-centered cubic structure, and it is stable from approximately 881° C to the melting point of approx. 1668°C. Adding alloying elements to titanium provides a wide range of physical and mechanical properties. Certain alloying additions, notably aluminum, tend to stabilize the alpha phase; that is, they raise the temperature at which the alloy will be transformed completely to the beta phase. This temperature is known as the beta-transus temperature. Alloying additions, such as chromium, niobium, copper, iron, m

  • Název v anglickém jazyce

    Processing of Titanium and Titanium Alloys by Forming

  • Popis výsledku anglicky

    Depending on the predominant phase or phases in their microstructure, titanium alloys are categorized as alpha, alpha-beta, and beta. This natural grouping not only reflects basic titanium production metallurgy, but it also indicates general properties specific for each type. The alpha phase in pure titanium is characterized by a hexagonal close-packed crystalline structure that remains stable from room temperature to approximately 881°C. The beta phase in pure titanium has a body-centered cubic structure, and it is stable from approximately 881° C to the melting point of approx. 1668°C. Adding alloying elements to titanium provides a wide range of physical and mechanical properties. Certain alloying additions, notably aluminum, tend to stabilize the alpha phase; that is, they raise the temperature at which the alloy will be transformed completely to the beta phase. This temperature is known as the beta-transus temperature. Alloying additions, such as chromium, niobium, copper, iron, m

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JG - Hutnictví, kovové materiály

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA106%2F09%2F1598" target="_blank" >GA106/09/1598: Výzkum vlastností a výroba nanostrukturního titanu pro dentální implantáty</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Hutnické listy

  • ISSN

    0018-8069

  • e-ISSN

  • Svazek periodika

    64

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    5

  • Strana od-do

    40-44

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus