Model of multilayer artificial neural network for prediction of iron ore demand
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F11%3A86081883" target="_blank" >RIV/61989100:27360/11:86081883 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model of multilayer artificial neural network for prediction of iron ore demand
Popis výsledku v původním jazyce
With regards to many effects which can disrupt the delivery schedule of iron ore to a company, this raw material must be ordered well in advance. Determination of the required order volume results from prediction of iron ore demand. With respect to the fluctuations on the metallurgical commodity market, it is very difficult to use classical prediction models based on time series analysis. A typical example when models based solely on historical time series can not be used to predict iron ore demand is the world economic crisis period, because the demand for metallurgical commodities witnesses a sharp decrease. The article presents prediction model based on multilayer artificial neural network which takes into account not only historical data of iron ore demand but also information regarding the current situation on the world steel market and the iron ore stock volume of a given metallurgical company. The model is designed in such a way that the output is represented by the demand predi
Název v anglickém jazyce
Model of multilayer artificial neural network for prediction of iron ore demand
Popis výsledku anglicky
With regards to many effects which can disrupt the delivery schedule of iron ore to a company, this raw material must be ordered well in advance. Determination of the required order volume results from prediction of iron ore demand. With respect to the fluctuations on the metallurgical commodity market, it is very difficult to use classical prediction models based on time series analysis. A typical example when models based solely on historical time series can not be used to predict iron ore demand is the world economic crisis period, because the demand for metallurgical commodities witnesses a sharp decrease. The article presents prediction model based on multilayer artificial neural network which takes into account not only historical data of iron ore demand but also information regarding the current situation on the world steel market and the iron ore stock volume of a given metallurgical company. The model is designed in such a way that the output is represented by the demand predi
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
20th Anniversary International Conference on Metallurgy and Materials: METAL 2011
ISBN
978-80-87294-24-6
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
1206-1210
Název nakladatele
Tanger
Místo vydání
Ostrava
Místo konání akce
Brno
Datum konání akce
18. 5. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—