Parametric and nonparametric methods of statistical process control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F16%3A86098794" target="_blank" >RIV/61989100:27360/16:86098794 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.17973/MMSJ.2016_11_2016163" target="_blank" >http://dx.doi.org/10.17973/MMSJ.2016_11_2016163</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17973/MMSJ.2016_11_2016163" target="_blank" >10.17973/MMSJ.2016_11_2016163</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parametric and nonparametric methods of statistical process control
Popis výsledku v původním jazyce
This paper presents the limitations of classical Shewhart control charts and some possibilities of statistical process control that can be used when the basic assumptions about data have not been fulfilled. These basic assumptions that must be met include mainly a requirement on the normality of the data, the requirement for constant mean and variance, and last but not least the requirement for mutual independence of data. In practice, those assumptions about the data are not necessarily always met. The aim of this article is to introduce the problems (such as normality failure, data dependence) that can occur when applying the classic Shewhart control charts. Additional aim of this article is to describe some non-parametric control charts and concretely introduce one of the non-parametric control charts, namely Shewhart sign control chart, including a practical example from a metallurgical process. During preparation of this article accessible pieces of knowledge on the issue were compared. Comparing the parametric and nonparametric methods it was found that nonparametric methods have many advantages and for cases where some of the basic assumptions about the data are not met they are appropriate.
Název v anglickém jazyce
Parametric and nonparametric methods of statistical process control
Popis výsledku anglicky
This paper presents the limitations of classical Shewhart control charts and some possibilities of statistical process control that can be used when the basic assumptions about data have not been fulfilled. These basic assumptions that must be met include mainly a requirement on the normality of the data, the requirement for constant mean and variance, and last but not least the requirement for mutual independence of data. In practice, those assumptions about the data are not necessarily always met. The aim of this article is to introduce the problems (such as normality failure, data dependence) that can occur when applying the classic Shewhart control charts. Additional aim of this article is to describe some non-parametric control charts and concretely introduce one of the non-parametric control charts, namely Shewhart sign control chart, including a practical example from a metallurgical process. During preparation of this article accessible pieces of knowledge on the issue were compared. Comparing the parametric and nonparametric methods it was found that nonparametric methods have many advantages and for cases where some of the basic assumptions about the data are not met they are appropriate.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JS - Řízení spolehlivosti a kvality, zkušebnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MM Science Journal
ISSN
1803-1269
e-ISSN
—
Svazek periodika
Neuveden
Číslo periodika v rámci svazku
Listopad 2016
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
1465-1472
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—