Statistical Process Control in Big Data Environment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F20%3A10247098" target="_blank" >RIV/61989100:27360/20:10247098 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9257251" target="_blank" >https://ieeexplore.ieee.org/document/9257251</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCC49264.2020.9257251" target="_blank" >10.1109/ICCC49264.2020.9257251</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical Process Control in Big Data Environment
Popis výsledku v původním jazyce
Big data analysis tools are an inevitable part of instruments and methods for monitoring and predicting the longitudinal performance of the processes in the production systems of the future, based on the deep automatization and overall digitalization. From this point of view statistical process control (SPC) will continue to be very effective method for meeting these goals. But there must be done some modifications. This paper deals with such possible modifications of SPC. In the first part of the paper the stress is put on various methods that can be integrated into SPC to meet new challenges in collecting, analysing and interpreting data (control charts for high yield processes, multivariable approaches, profile monitoring, data mining tools including machine learning methods, nonparametric control charts). SW for the selected discussed methods is also mentioned. The second part of the paper is devoted to the nonparametric methods of SPC and to the methodology of their practical application. (C) 2020 IEEE.
Název v anglickém jazyce
Statistical Process Control in Big Data Environment
Popis výsledku anglicky
Big data analysis tools are an inevitable part of instruments and methods for monitoring and predicting the longitudinal performance of the processes in the production systems of the future, based on the deep automatization and overall digitalization. From this point of view statistical process control (SPC) will continue to be very effective method for meeting these goals. But there must be done some modifications. This paper deals with such possible modifications of SPC. In the first part of the paper the stress is put on various methods that can be integrated into SPC to meet new challenges in collecting, analysing and interpreting data (control charts for high yield processes, multivariable approaches, profile monitoring, data mining tools including machine learning methods, nonparametric control charts). SW for the selected discussed methods is also mentioned. The second part of the paper is devoted to the nonparametric methods of SPC and to the methodology of their practical application. (C) 2020 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: Platforma pro výzkum orientovaný na Průmysl 4.0 a robotiku v ostravské aglomeraci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2020 21st International Carpathian Control Conference, ICCC 2020
ISBN
978-1-72811-952-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Košice
Datum konání akce
27. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—