Reduction of nitrogen oxides emissions in exhaust gases from waste
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F23%3A10252360" target="_blank" >RIV/61989100:27360/23:10252360 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27710/23:10252360
Výsledek na webu
<a href="https://doi.org/10.1063/5.0129462" target="_blank" >https://doi.org/10.1063/5.0129462</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0129462" target="_blank" >10.1063/5.0129462</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reduction of nitrogen oxides emissions in exhaust gases from waste
Popis výsledku v původním jazyce
The aim of the experiment was to verify the possibility of nitrogen oxides (NOx) reduction by iron compounds dosed into the flue gas stream under different combustion conditions. The motivation for conducting the experiment was to find cheap and available compounds that could streamline the process of existing denitrification methods in use. Such substances could be, for example, iron scale. The possibility of the catalytic ability of iron compounds in the reduction of nitrogen oxides under certain optimal combustion conditions is also confirmed by some foreign studies. Laboratory combustion tests were carried out on an experimental combustion plant, a periodically operating two-chamber furnace for waste incineration. The experiment was divided into two parts. In the first part, measurements of nitrogen oxide emissions were made when only natural gas was burned and gaseous ammonia (NH3) was simultaneously dosed with iron compounds. In the second part, measurements of the emission composition and the effect of the dosed iron additives on the amount of contained nitrogen oxides during the combustion of refuse derived fuel (RDF) with simultaneous combustion of natural gas in the supporting burner were carried out. The highest and comparable NOx conversion was achieved when two different additives, namely siderite and dried scale, were used under almost identical conditions in the refuse derived fuel combustion regime. The results of the present research confirm that the use of additives in the form of iron compounds can, with appropriate combustion process configuration, reduce the amount of NOx emissions produced, which can thus be crucial in meeting the increasingly stringent legislative requirements for reducing emission limits. (C) 2023 Author(s).
Název v anglickém jazyce
Reduction of nitrogen oxides emissions in exhaust gases from waste
Popis výsledku anglicky
The aim of the experiment was to verify the possibility of nitrogen oxides (NOx) reduction by iron compounds dosed into the flue gas stream under different combustion conditions. The motivation for conducting the experiment was to find cheap and available compounds that could streamline the process of existing denitrification methods in use. Such substances could be, for example, iron scale. The possibility of the catalytic ability of iron compounds in the reduction of nitrogen oxides under certain optimal combustion conditions is also confirmed by some foreign studies. Laboratory combustion tests were carried out on an experimental combustion plant, a periodically operating two-chamber furnace for waste incineration. The experiment was divided into two parts. In the first part, measurements of nitrogen oxide emissions were made when only natural gas was burned and gaseous ammonia (NH3) was simultaneously dosed with iron compounds. In the second part, measurements of the emission composition and the effect of the dosed iron additives on the amount of contained nitrogen oxides during the combustion of refuse derived fuel (RDF) with simultaneous combustion of natural gas in the supporting burner were carried out. The highest and comparable NOx conversion was achieved when two different additives, namely siderite and dried scale, were used under almost identical conditions in the refuse derived fuel combustion regime. The results of the present research confirm that the use of additives in the form of iron compounds can, with appropriate combustion process configuration, reduce the amount of NOx emissions produced, which can thus be crucial in meeting the increasingly stringent legislative requirements for reducing emission limits. (C) 2023 Author(s).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings. Volume 2672
ISBN
978-0-7354-4325-9
ISSN
0094-243X
e-ISSN
—
Počet stran výsledku
7
Strana od-do
—
Název nakladatele
American Institute of Physics
Místo vydání
New York
Místo konání akce
Horní Bečva
Datum konání akce
13. 10. 2021
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—