INFLUENCE OF DEFORMATION TEMPERATURE AND STRAIN RATE ON THE MAXIMUM FLOW STRESS LEVEL OF THE 3D PRINTED AISI 316L STEEL
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F23%3A10254537" target="_blank" >RIV/61989100:27360/23:10254537 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.37904/metal.2023.4637" target="_blank" >https://doi.org/10.37904/metal.2023.4637</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
INFLUENCE OF DEFORMATION TEMPERATURE AND STRAIN RATE ON THE MAXIMUM FLOW STRESS LEVEL OF THE 3D PRINTED AISI 316L STEEL
Popis výsledku v původním jazyce
he AISI 316L stainless steel is one of the most used 3D printed powder materials due to its good properties. It goes without saying that the properties of the 3D printed steel are naturally less or more different compared to the material which was prepared conventionally. One of the important material characteristics is its flow stress evolution under various thermomechanical circumstances, which has a direct connection to the deformation behavior. The hot deformation behavior of the examined 3D printed steel is in the frame of the submitted research studied with regard to the peak stress levels experimentally achieved under a wide temperature and strain rate range, as well as from the point of view of the onset of a dynamic softening phenomenon - in addition with an emphasis on the corresponding mathematical description. The obtained results indicate a minimal and maximal flow stress level of 65 MPa and 381 MPa as for the combination of 1,523 K - 0.1 sMINUS SIGN 1 and 1,173 K - 100 sMINUS SIGN 1, respectively. The experimentally achieved peak point coordinates have been described with a good accuracy - corresponding to the Pearson's correlation coefficient of 0.8238 and 0.9919 as regards to the peak strain and peak stress, respectively.
Název v anglickém jazyce
INFLUENCE OF DEFORMATION TEMPERATURE AND STRAIN RATE ON THE MAXIMUM FLOW STRESS LEVEL OF THE 3D PRINTED AISI 316L STEEL
Popis výsledku anglicky
he AISI 316L stainless steel is one of the most used 3D printed powder materials due to its good properties. It goes without saying that the properties of the 3D printed steel are naturally less or more different compared to the material which was prepared conventionally. One of the important material characteristics is its flow stress evolution under various thermomechanical circumstances, which has a direct connection to the deformation behavior. The hot deformation behavior of the examined 3D printed steel is in the frame of the submitted research studied with regard to the peak stress levels experimentally achieved under a wide temperature and strain rate range, as well as from the point of view of the onset of a dynamic softening phenomenon - in addition with an emphasis on the corresponding mathematical description. The obtained results indicate a minimal and maximal flow stress level of 65 MPa and 381 MPa as for the combination of 1,523 K - 0.1 sMINUS SIGN 1 and 1,173 K - 100 sMINUS SIGN 1, respectively. The experimentally achieved peak point coordinates have been described with a good accuracy - corresponding to the Pearson's correlation coefficient of 0.8238 and 0.9919 as regards to the peak strain and peak stress, respectively.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
METAL 2023 : 32nd International Conference on Metallurgy and Materials : conference proceedings : May 17–19, 2023, OREA Congress Hotel Brno, Czech Republic, EU
ISBN
978-80-88365-12-9
ISSN
2694-9296
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
Tanger
Místo vydání
Ostrava
Místo konání akce
Brno
Datum konání akce
17. 5. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—