Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optical damage thresholds of single-mode fiber-tip spintronic terahertz emitters

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F24%3A10255036" target="_blank" >RIV/61989100:27360/24:10255036 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://opg.optica.org/oe/fulltext.cfm?uri=oe-32-14-24826&id=552793" target="_blank" >https://opg.optica.org/oe/fulltext.cfm?uri=oe-32-14-24826&id=552793</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1364/OE.525747" target="_blank" >10.1364/OE.525747</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optical damage thresholds of single-mode fiber-tip spintronic terahertz emitters

  • Popis výsledku v původním jazyce

    Spintronic terahertz emitters (STEs) are gapless, ultrabroadband terahertz sources that can be driven within a wide pump-wavelength and repetition-rate range. While STEs driven by strong pump lasers operating at kilohertz repetition rates excel in generating high electric field strengths for terahertz spectroscopy or ellipsometry, newly advancing technologies such as ultrafast modulation of terahertz polarization, scanning tunneling microscopy, laser terahertz emission nanoscopy, and fully fiber-coupled integrated systems demand an STE pumping at megahertz repetition rates. In all these applications the available terahertz power is ultimately limited by the STE&apos;s optical damage threshold. However, to date, only very few publications have targeted this crucial topic and investigations beyond the kilohertz repetition-rate regime are missing. Here, we present a complete study of our single-mode fiber-tip STEs&apos; optical damage thresholds covering the kilohertz, megahertz, and gigahertz repetition-rate regimes as well as continuous-wave irradiation. As a very important finding, we introduce the necessity of classifying the optical damage threshold into two regimes: a low-repetition-rate regime characterized by a nearly constant fluence threshold, and a high-repetition-rate regime characterized by an antiproportional fluence dependence (&quot;average-power threshold&quot;). For our single-mode fiber-tip STEs, the transition between these regimes occurs around 4 MHz. Moreover, we present a cohesive theory of the damaging thermodynamical processes at play and identify temperature-driven inter-layer diffusion as the primary cause of the STE failure. These findings are substantiated by atomic force microscopy, infrared scattering-type scanning near-field optical microscopy, and scanning transmission electron microscopy measurements. This new level of understanding offers a clear optimization lever and provides valuable support for future advancements in the promising field of spintronic terahertz emission.

  • Název v anglickém jazyce

    Optical damage thresholds of single-mode fiber-tip spintronic terahertz emitters

  • Popis výsledku anglicky

    Spintronic terahertz emitters (STEs) are gapless, ultrabroadband terahertz sources that can be driven within a wide pump-wavelength and repetition-rate range. While STEs driven by strong pump lasers operating at kilohertz repetition rates excel in generating high electric field strengths for terahertz spectroscopy or ellipsometry, newly advancing technologies such as ultrafast modulation of terahertz polarization, scanning tunneling microscopy, laser terahertz emission nanoscopy, and fully fiber-coupled integrated systems demand an STE pumping at megahertz repetition rates. In all these applications the available terahertz power is ultimately limited by the STE&apos;s optical damage threshold. However, to date, only very few publications have targeted this crucial topic and investigations beyond the kilohertz repetition-rate regime are missing. Here, we present a complete study of our single-mode fiber-tip STEs&apos; optical damage thresholds covering the kilohertz, megahertz, and gigahertz repetition-rate regimes as well as continuous-wave irradiation. As a very important finding, we introduce the necessity of classifying the optical damage threshold into two regimes: a low-repetition-rate regime characterized by a nearly constant fluence threshold, and a high-repetition-rate regime characterized by an antiproportional fluence dependence (&quot;average-power threshold&quot;). For our single-mode fiber-tip STEs, the transition between these regimes occurs around 4 MHz. Moreover, we present a cohesive theory of the damaging thermodynamical processes at play and identify temperature-driven inter-layer diffusion as the primary cause of the STE failure. These findings are substantiated by atomic force microscopy, infrared scattering-type scanning near-field optical microscopy, and scanning transmission electron microscopy measurements. This new level of understanding offers a clear optimization lever and provides valuable support for future advancements in the promising field of spintronic terahertz emission.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10300 - Physical sciences

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Optics Express

  • ISSN

    1094-4087

  • e-ISSN

  • Svazek periodika

    32

  • Číslo periodika v rámci svazku

    16

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    24826-24838

  • Kód UT WoS článku

    001278801500010

  • EID výsledku v databázi Scopus

    2-s2.0-85198358950