Removing 65 Years of Approximation in Rotating Ring Disk Electrode Theory with Physics-Informed Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F24%3A10255421" target="_blank" >RIV/61989100:27360/24:10255421 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01258" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpclett.4c01258</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpclett.4c01258" target="_blank" >10.1021/acs.jpclett.4c01258</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Removing 65 Years of Approximation in Rotating Ring Disk Electrode Theory with Physics-Informed Neural Networks
Popis výsledku v původním jazyce
The rotating Ring Disk Electrode (RRDE), since its introduction in 1959 by Frumkin and Nekrasov, has become indispensable with diverse applications in electrochemistry, catalysis, and material science. The collection efficiency (N) is an important parameter extracted from the ring and disk currents of the RRDE, providing valuable information about reaction mechanism, kinetics, and pathways. The theoretical prediction of N is a challenging task: requiring solution of the complete convective diffusion mass transport equation with complex velocity profiles. Previous efforts, including by Albery and Bruckenstein who developed the most widely used analytical equations, heavily relied on approximations by removing radial diffusion and using approximate velocity profiles. 65 years after the introduction of RRDE, we employ a physics-informed neural network to solve the complete convective diffusion mass transport equation, to reveal the formerly neglected edge effects and velocity corrections on N, and to provide a guideline where conventional approximation is applicable.
Název v anglickém jazyce
Removing 65 Years of Approximation in Rotating Ring Disk Electrode Theory with Physics-Informed Neural Networks
Popis výsledku anglicky
The rotating Ring Disk Electrode (RRDE), since its introduction in 1959 by Frumkin and Nekrasov, has become indispensable with diverse applications in electrochemistry, catalysis, and material science. The collection efficiency (N) is an important parameter extracted from the ring and disk currents of the RRDE, providing valuable information about reaction mechanism, kinetics, and pathways. The theoretical prediction of N is a challenging task: requiring solution of the complete convective diffusion mass transport equation with complex velocity profiles. Previous efforts, including by Albery and Bruckenstein who developed the most widely used analytical equations, heavily relied on approximations by removing radial diffusion and using approximate velocity profiles. 65 years after the introduction of RRDE, we employ a physics-informed neural network to solve the complete convective diffusion mass transport equation, to reveal the formerly neglected edge effects and velocity corrections on N, and to provide a guideline where conventional approximation is applicable.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry Letters
ISSN
1948-7185
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
24
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
6315-6324
Kód UT WoS článku
001243965800001
EID výsledku v databázi Scopus
2-s2.0-85196030632