Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A proposed hybrid model of ANN and KNN for solar cell defects detection and temperature prediction using fuzzy image segmentation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F24%3A10255653" target="_blank" >RIV/61989100:27360/24:10255653 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S2405844024078058?via%3Dihub#coi0010" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844024078058?via%3Dihub#coi0010</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.heliyon.2024.e31774" target="_blank" >10.1016/j.heliyon.2024.e31774</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A proposed hybrid model of ANN and KNN for solar cell defects detection and temperature prediction using fuzzy image segmentation

  • Popis výsledku v původním jazyce

    This paper presents a novel hybrid model employing Artificial Neural Networks (ANN) and Mathematical Morphology (MM) for the effective detection of defects in solar cells. Focusing on issues such as broken corners and black edges caused by environmental factors like broken glass cover, dust, and temperature variations. This study utilizes a hybrid model of ANN and K-Nearest Neighbor (KNN) for temperature prediction. This hybrid approach leverages the strengths of both models, potentially opening up new avenues for improved accuracy in temperature forecasting, which is critical for solar energy applications. The significance lies in the interconnectedness of temperature fluctuations and solar cell efficiency, leading to defects. The proposed model aims to predict temperatures accurately, providing insights into potential solar cell efficiency problems. Subsequently, this work studies the transitions to defect detection using Fuzzy C-Means (FCM) clustering and MM techniques. The hybrid model demonstrates accurate temperature prediction with Mean Absolute Percentage Error (MAPE) values of 0.92 %, 0.72 %, and 1.3 % for average, maximum, and minimum temperatures, respectively. The defect detection process yields a detection accuracy (CR) of 96 % and sensitivity of detection (SD) of 89 %. This work is validated compared to the literature work done and by using K-fold cross validation technique. The proposed work emphasizes the improvement in defect detection accuracy and the overall quality enhancement of solar cells.

  • Název v anglickém jazyce

    A proposed hybrid model of ANN and KNN for solar cell defects detection and temperature prediction using fuzzy image segmentation

  • Popis výsledku anglicky

    This paper presents a novel hybrid model employing Artificial Neural Networks (ANN) and Mathematical Morphology (MM) for the effective detection of defects in solar cells. Focusing on issues such as broken corners and black edges caused by environmental factors like broken glass cover, dust, and temperature variations. This study utilizes a hybrid model of ANN and K-Nearest Neighbor (KNN) for temperature prediction. This hybrid approach leverages the strengths of both models, potentially opening up new avenues for improved accuracy in temperature forecasting, which is critical for solar energy applications. The significance lies in the interconnectedness of temperature fluctuations and solar cell efficiency, leading to defects. The proposed model aims to predict temperatures accurately, providing insights into potential solar cell efficiency problems. Subsequently, this work studies the transitions to defect detection using Fuzzy C-Means (FCM) clustering and MM techniques. The hybrid model demonstrates accurate temperature prediction with Mean Absolute Percentage Error (MAPE) values of 0.92 %, 0.72 %, and 1.3 % for average, maximum, and minimum temperatures, respectively. The defect detection process yields a detection accuracy (CR) of 96 % and sensitivity of detection (SD) of 89 %. This work is validated compared to the literature work done and by using K-fold cross validation technique. The proposed work emphasizes the improvement in defect detection accuracy and the overall quality enhancement of solar cells.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EH22_008%2F0004631" target="_blank" >EH22_008/0004631: Materiály a technologie pro udržitelný rozvoj</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Heliyon

  • ISSN

    2405-8440

  • e-ISSN

    2405-8440

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    "e31774"

  • Kód UT WoS článku

    001247677200001

  • EID výsledku v databázi Scopus

    2-s2.0-85193909300