A proposed hybrid model of ANN and KNN for solar cell defects detection and temperature prediction using fuzzy image segmentation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F24%3A10255653" target="_blank" >RIV/61989100:27360/24:10255653 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405844024078058?via%3Dihub#coi0010" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844024078058?via%3Dihub#coi0010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2024.e31774" target="_blank" >10.1016/j.heliyon.2024.e31774</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A proposed hybrid model of ANN and KNN for solar cell defects detection and temperature prediction using fuzzy image segmentation
Popis výsledku v původním jazyce
This paper presents a novel hybrid model employing Artificial Neural Networks (ANN) and Mathematical Morphology (MM) for the effective detection of defects in solar cells. Focusing on issues such as broken corners and black edges caused by environmental factors like broken glass cover, dust, and temperature variations. This study utilizes a hybrid model of ANN and K-Nearest Neighbor (KNN) for temperature prediction. This hybrid approach leverages the strengths of both models, potentially opening up new avenues for improved accuracy in temperature forecasting, which is critical for solar energy applications. The significance lies in the interconnectedness of temperature fluctuations and solar cell efficiency, leading to defects. The proposed model aims to predict temperatures accurately, providing insights into potential solar cell efficiency problems. Subsequently, this work studies the transitions to defect detection using Fuzzy C-Means (FCM) clustering and MM techniques. The hybrid model demonstrates accurate temperature prediction with Mean Absolute Percentage Error (MAPE) values of 0.92 %, 0.72 %, and 1.3 % for average, maximum, and minimum temperatures, respectively. The defect detection process yields a detection accuracy (CR) of 96 % and sensitivity of detection (SD) of 89 %. This work is validated compared to the literature work done and by using K-fold cross validation technique. The proposed work emphasizes the improvement in defect detection accuracy and the overall quality enhancement of solar cells.
Název v anglickém jazyce
A proposed hybrid model of ANN and KNN for solar cell defects detection and temperature prediction using fuzzy image segmentation
Popis výsledku anglicky
This paper presents a novel hybrid model employing Artificial Neural Networks (ANN) and Mathematical Morphology (MM) for the effective detection of defects in solar cells. Focusing on issues such as broken corners and black edges caused by environmental factors like broken glass cover, dust, and temperature variations. This study utilizes a hybrid model of ANN and K-Nearest Neighbor (KNN) for temperature prediction. This hybrid approach leverages the strengths of both models, potentially opening up new avenues for improved accuracy in temperature forecasting, which is critical for solar energy applications. The significance lies in the interconnectedness of temperature fluctuations and solar cell efficiency, leading to defects. The proposed model aims to predict temperatures accurately, providing insights into potential solar cell efficiency problems. Subsequently, this work studies the transitions to defect detection using Fuzzy C-Means (FCM) clustering and MM techniques. The hybrid model demonstrates accurate temperature prediction with Mean Absolute Percentage Error (MAPE) values of 0.92 %, 0.72 %, and 1.3 % for average, maximum, and minimum temperatures, respectively. The defect detection process yields a detection accuracy (CR) of 96 % and sensitivity of detection (SD) of 89 %. This work is validated compared to the literature work done and by using K-fold cross validation technique. The proposed work emphasizes the improvement in defect detection accuracy and the overall quality enhancement of solar cells.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004631" target="_blank" >EH22_008/0004631: Materiály a technologie pro udržitelný rozvoj</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Heliyon
ISSN
2405-8440
e-ISSN
2405-8440
Svazek periodika
10
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
"e31774"
Kód UT WoS článku
001247677200001
EID výsledku v databázi Scopus
2-s2.0-85193909300