Interval and Fuzzy Linear Programming (Demonstrated by Example)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F07%3A00017196" target="_blank" >RIV/61989100:27510/07:00017196 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interval and Fuzzy Linear Programming (Demonstrated by Example)
Popis výsledku v původním jazyce
In this paper, the well known problem of linear programming (LP) with interval (ILP) and fuzzy coefficients (FLP) is investigated. Pessimistic and optimistic solution of ILP problem is defined and discussed. Then FLP problem with fuzzy inequality relations, fuzzy maximization and fuzzy constraints is investigated. Fuzzy coefficients are taken in the form of fuzzy intervals, particularly triangular fuzzy numbers. Arithmetic operations with fuzzy numbers are introduced and 2 types of inequality relationsbetween fuzzy numbers, particularly Pessimistic/Optimistic-inequality relations are investigated. Then a-feasible solution of FLP problem and a-optimal solution of FLP problem is considered. Other approaches are also mentioned and advantages/disadvantages of various approaches are discussed. The introduced concepts are demonstrated on simple examples solved by Excel-Solver and displayed by a graphical aid.
Název v anglickém jazyce
Interval and Fuzzy Linear Programming (Demonstrated by Example)
Popis výsledku anglicky
In this paper, the well known problem of linear programming (LP) with interval (ILP) and fuzzy coefficients (FLP) is investigated. Pessimistic and optimistic solution of ILP problem is defined and discussed. Then FLP problem with fuzzy inequality relations, fuzzy maximization and fuzzy constraints is investigated. Fuzzy coefficients are taken in the form of fuzzy intervals, particularly triangular fuzzy numbers. Arithmetic operations with fuzzy numbers are introduced and 2 types of inequality relationsbetween fuzzy numbers, particularly Pessimistic/Optimistic-inequality relations are investigated. Then a-feasible solution of FLP problem and a-optimal solution of FLP problem is considered. Other approaches are also mentioned and advantages/disadvantages of various approaches are discussed. The introduced concepts are demonstrated on simple examples solved by Excel-Solver and displayed by a graphical aid.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2007
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
25th International Conference on Mathematical Methods in Economics
ISBN
978-80-248-1457-5
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
—
Název nakladatele
VŠB-TU Ostrava
Místo vydání
Ostrava
Místo konání akce
Ostrava
Datum konání akce
4. 9. 2007
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000262102500038