The bandwidth selection in connection to option implied volatility extraction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F15%3A86094768" target="_blank" >RIV/61989100:27510/15:86094768 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985556:_____/15:00452192
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The bandwidth selection in connection to option implied volatility extraction
Popis výsledku v původním jazyce
Among various kinds of options we can found at the market, some are traded at organized exchanges and therefore are quite liquid, while others are traded only between particular parties. Whereas there is no need to look for a model to price liquid exchange traded options, since their price is generally accepted by the demand and supply, for illiquid or even exotic options new efficient models are still developed. The current market practice is to obtain the implied volatility of liquid options as based on Black-Scholes type (BS hereafter) models. Since the BS model at one time moment can be related to a large set of IVs as given by different parameters (maturity/moneyness relation) of tradable options leading to IV curve or surface. Since there is no continuum of options with various parameters, the curve / surface must be obtained by suitable smoothing and interpolation. However, it can bring an arbitrage opportunity, if no-arbitrage conditions on state price density (SPD) are ignored. The focus of this paper is to study the behavior of IV and SPD for several kernel functions and with respect to different choices of bandwidth parameter h. Specifically, we show several interesting implications of the change of h on the violation of no arbitrage condition and the total area of SPD under zero.
Název v anglickém jazyce
The bandwidth selection in connection to option implied volatility extraction
Popis výsledku anglicky
Among various kinds of options we can found at the market, some are traded at organized exchanges and therefore are quite liquid, while others are traded only between particular parties. Whereas there is no need to look for a model to price liquid exchange traded options, since their price is generally accepted by the demand and supply, for illiquid or even exotic options new efficient models are still developed. The current market practice is to obtain the implied volatility of liquid options as based on Black-Scholes type (BS hereafter) models. Since the BS model at one time moment can be related to a large set of IVs as given by different parameters (maturity/moneyness relation) of tradable options leading to IV curve or surface. Since there is no continuum of options with various parameters, the curve / surface must be obtained by suitable smoothing and interpolation. However, it can bring an arbitrage opportunity, if no-arbitrage conditions on state price density (SPD) are ignored. The focus of this paper is to study the behavior of IV and SPD for several kernel functions and with respect to different choices of bandwidth parameter h. Specifically, we show several interesting implications of the change of h on the violation of no arbitrage condition and the total area of SPD under zero.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Liberec Economic Forum 2015 : proceedings of the 12th international conference : 16th - 17th September 2015, Liberec, Czech Republic, EU
ISBN
978-80-7494-225-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
201-208
Název nakladatele
Technical University of Liberec
Místo vydání
Liberec
Místo konání akce
Liberec
Datum konání akce
16. 9. 2015
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000365053000020