Statistical and Soft Computing Methods Applied to High Frequency Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F16%3A86097350" target="_blank" >RIV/61989100:27510/16:86097350 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Statistical and Soft Computing Methods Applied to High Frequency Data
Popis výsledku v původním jazyce
We evaluate statistical and machine learning methods for predicting different high frequency data sets. Firstly, in this paper we develop forecasting models based on the statistical (stochastic) methods, and on the soft methods using neural networks for the time series of daily exchange rates AUD currency against US dollar. Secondly, we evaluate statistical and machine learning methods for half-hourly 1-step-ahead electricity demand prediction using Australian electricity data. To illustrate the forecasting performance of these approaches the learning aspects of RBF networks are presented. We also show that an RBF neural network trained by genetic algorithm can achieved better prediction result than classic one. It is also found that the risk estimation process based on soft methods is simplified and less critical to the question whether the data is true crisp or white noise.
Název v anglickém jazyce
Statistical and Soft Computing Methods Applied to High Frequency Data
Popis výsledku anglicky
We evaluate statistical and machine learning methods for predicting different high frequency data sets. Firstly, in this paper we develop forecasting models based on the statistical (stochastic) methods, and on the soft methods using neural networks for the time series of daily exchange rates AUD currency against US dollar. Secondly, we evaluate statistical and machine learning methods for half-hourly 1-step-ahead electricity demand prediction using Australian electricity data. To illustrate the forecasting performance of these approaches the learning aspects of RBF networks are presented. We also show that an RBF neural network trained by genetic algorithm can achieved better prediction result than classic one. It is also found that the risk estimation process based on soft methods is simplified and less critical to the question whether the data is true crisp or white noise.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.20.0296" target="_blank" >EE2.3.20.0296: Výzkumný tým pro modelování ekonomických a finančních procesů na VŠB-TU Ostrava</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Multiple-Valued Logic and Soft Computing
ISSN
1542-3980
e-ISSN
—
Svazek periodika
Volume 26
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
593-608
Kód UT WoS článku
000371439400005
EID výsledku v databázi Scopus
2-s2.0-84961827256