An extended multiple criteria data envelopment analysis model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F17%3A86098952" target="_blank" >RIV/61989100:27510/17:86098952 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.eswa.2016.12.030" target="_blank" >http://dx.doi.org/10.1016/j.eswa.2016.12.030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2016.12.030" target="_blank" >10.1016/j.eswa.2016.12.030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An extended multiple criteria data envelopment analysis model
Popis výsledku v původním jazyce
Several researchers have adapted the data envelopment analysis (DEA) models to deal with two inter-related problems: weak discriminating power and unrealistic weight distribution. Improving discrimination power and yielding more reasonable dispersion of input and output weights simultaneously remain a challenge for DEA and multiple criteria DEA (MCDEA) models. This paper puts emphasis on weight restrictions to boost discriminating power as well as to generate true weight dispersion of MCDEA when a priori information about the weights is not available. To this end, we modify a very recent MCDEA models in the literature by determining an optimum lower bound for input and output weights. The contribution of this paper is sevenfold: first, we show that a larger amount for the lower bound on weights often leads to improving discriminating power and reaching realistic weights in MCDEA models due to imposing more weight restrictions; second, the procedure for sensitivity analysis is designed to define stability for the weights of each evaluation criterion; third, we extend a weighted MCDEA model to three evaluation criteria based on the maximum lower bound for input and output weights; fourth, we develop a super-efficiency model for efficient units under the proposed MCDEA model in this paper; fifth, we extend an epsilon-based minsum BCC-DEA model to proceed our research objectives under variable returns to scale (VRS); sixth, we present a simulation study to statistically analyze weight dispersion and rankings between five different methods in terms of non-parametric tests; and seventh, we demonstrate the applicability of the proposed models with an application to European Union member countries.
Název v anglickém jazyce
An extended multiple criteria data envelopment analysis model
Popis výsledku anglicky
Several researchers have adapted the data envelopment analysis (DEA) models to deal with two inter-related problems: weak discriminating power and unrealistic weight distribution. Improving discrimination power and yielding more reasonable dispersion of input and output weights simultaneously remain a challenge for DEA and multiple criteria DEA (MCDEA) models. This paper puts emphasis on weight restrictions to boost discriminating power as well as to generate true weight dispersion of MCDEA when a priori information about the weights is not available. To this end, we modify a very recent MCDEA models in the literature by determining an optimum lower bound for input and output weights. The contribution of this paper is sevenfold: first, we show that a larger amount for the lower bound on weights often leads to improving discriminating power and reaching realistic weights in MCDEA models due to imposing more weight restrictions; second, the procedure for sensitivity analysis is designed to define stability for the weights of each evaluation criterion; third, we extend a weighted MCDEA model to three evaluation criteria based on the maximum lower bound for input and output weights; fourth, we develop a super-efficiency model for efficient units under the proposed MCDEA model in this paper; fifth, we extend an epsilon-based minsum BCC-DEA model to proceed our research objectives under variable returns to scale (VRS); sixth, we present a simulation study to statistically analyze weight dispersion and rankings between five different methods in terms of non-parametric tests; and seventh, we demonstrate the applicability of the proposed models with an application to European Union member countries.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
—
Svazek periodika
73
Číslo periodika v rámci svazku
není uveden
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
201-219
Kód UT WoS článku
000394632200015
EID výsledku v databázi Scopus
2-s2.0-85009069180