Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Data envelopment analysis and big data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10239463" target="_blank" >RIV/61989100:27510/19:10239463 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0377221718309123#" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377221718309123#</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ejor.2018.10.044" target="_blank" >10.1016/j.ejor.2018.10.044</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Data envelopment analysis and big data

  • Popis výsledku v původním jazyce

    In the traditional data envelopment analysis (DEA) approach for a set of n Decision Making Units (DMUs), a standard DEA model is solved n times, one for each DMU. As the number of DMUs increases, the running-time to solve the standard model sharply rises. In this study, a new framework is proposed to significantly decrease the required DEA calculation time in comparison with the existing methodologies when a large set of DMUs (e.g., 20,000 DMUs or more) is present. The framework includes five steps: (i) selecting a subsample of DMUs using a proposed algorithm, (ii) finding the best-practice DMUs in the selected subsample, (iii) finding the exterior DMUs to the hull of the selected subsample, (iv) identifying the set of all efficient DMUs, and (v) measuring the performance scores of DMUs as those arising from the traditional DEA approach. The variable returns to scale technology is assumed and several simulation experiments are designed to estimate the running-time for applying the proposed method for big data. The obtained results in this study point out that the running-time is decreased up to 99.9% in comparison with the existing techniques. In addition, we illustrate the essential computation time for applying the proposed method as a function of the number of DMUs (cardinality), number of inputs and outputs (dimension), and the proportion of efficient DMUs (density). The methods are also compared on a real data set consisting of 30,099 electric power plants in the United States from 1996 to 2016.

  • Název v anglickém jazyce

    Data envelopment analysis and big data

  • Popis výsledku anglicky

    In the traditional data envelopment analysis (DEA) approach for a set of n Decision Making Units (DMUs), a standard DEA model is solved n times, one for each DMU. As the number of DMUs increases, the running-time to solve the standard model sharply rises. In this study, a new framework is proposed to significantly decrease the required DEA calculation time in comparison with the existing methodologies when a large set of DMUs (e.g., 20,000 DMUs or more) is present. The framework includes five steps: (i) selecting a subsample of DMUs using a proposed algorithm, (ii) finding the best-practice DMUs in the selected subsample, (iii) finding the exterior DMUs to the hull of the selected subsample, (iv) identifying the set of all efficient DMUs, and (v) measuring the performance scores of DMUs as those arising from the traditional DEA approach. The variable returns to scale technology is assumed and several simulation experiments are designed to estimate the running-time for applying the proposed method for big data. The obtained results in this study point out that the running-time is decreased up to 99.9% in comparison with the existing techniques. In addition, we illustrate the essential computation time for applying the proposed method as a function of the number of DMUs (cardinality), number of inputs and outputs (dimension), and the proportion of efficient DMUs (density). The methods are also compared on a real data set consisting of 30,099 electric power plants in the United States from 1996 to 2016.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-17810S" target="_blank" >GA16-17810S: Selektivní měřítka v analýze datových obalů: teorie a aplikace</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    European Journal of Operational Research

  • ISSN

    0377-2217

  • e-ISSN

  • Svazek periodika

    274

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    8

  • Strana od-do

    1047-1054

  • Kód UT WoS článku

    000457509200019

  • EID výsledku v databázi Scopus

    2-s2.0-85056389811