Data envelopment analysis and big data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10239463" target="_blank" >RIV/61989100:27510/19:10239463 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0377221718309123#" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377221718309123#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejor.2018.10.044" target="_blank" >10.1016/j.ejor.2018.10.044</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data envelopment analysis and big data
Popis výsledku v původním jazyce
In the traditional data envelopment analysis (DEA) approach for a set of n Decision Making Units (DMUs), a standard DEA model is solved n times, one for each DMU. As the number of DMUs increases, the running-time to solve the standard model sharply rises. In this study, a new framework is proposed to significantly decrease the required DEA calculation time in comparison with the existing methodologies when a large set of DMUs (e.g., 20,000 DMUs or more) is present. The framework includes five steps: (i) selecting a subsample of DMUs using a proposed algorithm, (ii) finding the best-practice DMUs in the selected subsample, (iii) finding the exterior DMUs to the hull of the selected subsample, (iv) identifying the set of all efficient DMUs, and (v) measuring the performance scores of DMUs as those arising from the traditional DEA approach. The variable returns to scale technology is assumed and several simulation experiments are designed to estimate the running-time for applying the proposed method for big data. The obtained results in this study point out that the running-time is decreased up to 99.9% in comparison with the existing techniques. In addition, we illustrate the essential computation time for applying the proposed method as a function of the number of DMUs (cardinality), number of inputs and outputs (dimension), and the proportion of efficient DMUs (density). The methods are also compared on a real data set consisting of 30,099 electric power plants in the United States from 1996 to 2016.
Název v anglickém jazyce
Data envelopment analysis and big data
Popis výsledku anglicky
In the traditional data envelopment analysis (DEA) approach for a set of n Decision Making Units (DMUs), a standard DEA model is solved n times, one for each DMU. As the number of DMUs increases, the running-time to solve the standard model sharply rises. In this study, a new framework is proposed to significantly decrease the required DEA calculation time in comparison with the existing methodologies when a large set of DMUs (e.g., 20,000 DMUs or more) is present. The framework includes five steps: (i) selecting a subsample of DMUs using a proposed algorithm, (ii) finding the best-practice DMUs in the selected subsample, (iii) finding the exterior DMUs to the hull of the selected subsample, (iv) identifying the set of all efficient DMUs, and (v) measuring the performance scores of DMUs as those arising from the traditional DEA approach. The variable returns to scale technology is assumed and several simulation experiments are designed to estimate the running-time for applying the proposed method for big data. The obtained results in this study point out that the running-time is decreased up to 99.9% in comparison with the existing techniques. In addition, we illustrate the essential computation time for applying the proposed method as a function of the number of DMUs (cardinality), number of inputs and outputs (dimension), and the proportion of efficient DMUs (density). The methods are also compared on a real data set consisting of 30,099 electric power plants in the United States from 1996 to 2016.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-17810S" target="_blank" >GA16-17810S: Selektivní měřítka v analýze datových obalů: teorie a aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Operational Research
ISSN
0377-2217
e-ISSN
—
Svazek periodika
274
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
1047-1054
Kód UT WoS článku
000457509200019
EID výsledku v databázi Scopus
2-s2.0-85056389811