Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

"Intelligent" finance and treasury management: what we can expect

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10243528" target="_blank" >RIV/61989100:27510/19:10243528 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/62156489:43110/20:43916628

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00146-019-00919-6" target="_blank" >https://link.springer.com/article/10.1007/s00146-019-00919-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00146-019-00919-6" target="_blank" >10.1007/s00146-019-00919-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    "Intelligent" finance and treasury management: what we can expect

  • Popis výsledku v původním jazyce

    Artificial intelligence poses a particular challenge in its application to finance/treasury management because most treasury functions are no longer physical processes, but rather virtual processes that are increasingly highly automated. Most finance/treasury teams are knowledge workers who make decisions and conduct analytics within often dynamic frameworks that must incorporate environmental considerations (foreign exchange rates, GDP forecasts), internal considerations (growth needs, business trends), as well as the impact of any actions on related corporate decisions which are also highly complex (e.g., hedging, investing, capital structure, liquidity levels). Artificial intelligence in finance and treasury is thus most analogous to the complexity of a human nervous system as it encompasses far more than the automation of tasks. Similar to the human nervous system, AI systems in finance/treasury must manage data quickly and accurately, including the capture and classification of data and its integration into larger datasets. At present, the AI network neural system has been gradually improved and is widely used in many fields of treasury management, such as early warning of potential financial crisis, diagnosis of financial risk, control of financial information data quality and mining of hidden financial data, information, etc. (C) 2019, Springer-Verlag London Ltd., part of Springer Nature.

  • Název v anglickém jazyce

    "Intelligent" finance and treasury management: what we can expect

  • Popis výsledku anglicky

    Artificial intelligence poses a particular challenge in its application to finance/treasury management because most treasury functions are no longer physical processes, but rather virtual processes that are increasingly highly automated. Most finance/treasury teams are knowledge workers who make decisions and conduct analytics within often dynamic frameworks that must incorporate environmental considerations (foreign exchange rates, GDP forecasts), internal considerations (growth needs, business trends), as well as the impact of any actions on related corporate decisions which are also highly complex (e.g., hedging, investing, capital structure, liquidity levels). Artificial intelligence in finance and treasury is thus most analogous to the complexity of a human nervous system as it encompasses far more than the automation of tasks. Similar to the human nervous system, AI systems in finance/treasury must manage data quickly and accurately, including the capture and classification of data and its integration into larger datasets. At present, the AI network neural system has been gradually improved and is widely used in many fields of treasury management, such as early warning of potential financial crisis, diagnosis of financial risk, control of financial information data quality and mining of hidden financial data, information, etc. (C) 2019, Springer-Verlag London Ltd., part of Springer Nature.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    50206 - Finance

Návaznosti výsledku

  • Projekt

  • Návaznosti

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    AI &amp; Society

  • ISSN

    0951-5666

  • e-ISSN

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    11.10.2019

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    000490035700001

  • EID výsledku v databázi Scopus

    2-s2.0-85074460377