"Intelligent" finance and treasury management: what we can expect
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10243528" target="_blank" >RIV/61989100:27510/19:10243528 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62156489:43110/20:43916628
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00146-019-00919-6" target="_blank" >https://link.springer.com/article/10.1007/s00146-019-00919-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00146-019-00919-6" target="_blank" >10.1007/s00146-019-00919-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
"Intelligent" finance and treasury management: what we can expect
Popis výsledku v původním jazyce
Artificial intelligence poses a particular challenge in its application to finance/treasury management because most treasury functions are no longer physical processes, but rather virtual processes that are increasingly highly automated. Most finance/treasury teams are knowledge workers who make decisions and conduct analytics within often dynamic frameworks that must incorporate environmental considerations (foreign exchange rates, GDP forecasts), internal considerations (growth needs, business trends), as well as the impact of any actions on related corporate decisions which are also highly complex (e.g., hedging, investing, capital structure, liquidity levels). Artificial intelligence in finance and treasury is thus most analogous to the complexity of a human nervous system as it encompasses far more than the automation of tasks. Similar to the human nervous system, AI systems in finance/treasury must manage data quickly and accurately, including the capture and classification of data and its integration into larger datasets. At present, the AI network neural system has been gradually improved and is widely used in many fields of treasury management, such as early warning of potential financial crisis, diagnosis of financial risk, control of financial information data quality and mining of hidden financial data, information, etc. (C) 2019, Springer-Verlag London Ltd., part of Springer Nature.
Název v anglickém jazyce
"Intelligent" finance and treasury management: what we can expect
Popis výsledku anglicky
Artificial intelligence poses a particular challenge in its application to finance/treasury management because most treasury functions are no longer physical processes, but rather virtual processes that are increasingly highly automated. Most finance/treasury teams are knowledge workers who make decisions and conduct analytics within often dynamic frameworks that must incorporate environmental considerations (foreign exchange rates, GDP forecasts), internal considerations (growth needs, business trends), as well as the impact of any actions on related corporate decisions which are also highly complex (e.g., hedging, investing, capital structure, liquidity levels). Artificial intelligence in finance and treasury is thus most analogous to the complexity of a human nervous system as it encompasses far more than the automation of tasks. Similar to the human nervous system, AI systems in finance/treasury must manage data quickly and accurately, including the capture and classification of data and its integration into larger datasets. At present, the AI network neural system has been gradually improved and is widely used in many fields of treasury management, such as early warning of potential financial crisis, diagnosis of financial risk, control of financial information data quality and mining of hidden financial data, information, etc. (C) 2019, Springer-Verlag London Ltd., part of Springer Nature.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
AI & Society
ISSN
0951-5666
e-ISSN
—
Svazek periodika
neuveden
Číslo periodika v rámci svazku
11.10.2019
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000490035700001
EID výsledku v databázi Scopus
2-s2.0-85074460377