Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-valued measures in DEA in the presence of undesirable outputs

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F20%3A10242779" target="_blank" >RIV/61989100:27510/20:10242779 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0305048318309873?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0305048318309873?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.omega.2019.01.010" target="_blank" >10.1016/j.omega.2019.01.010</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-valued measures in DEA in the presence of undesirable outputs

  • Popis výsledku v původním jazyce

    Data envelopment analysis (DEA) evaluates the relative efficiency of a set of comparable decision making units (DMUs) with multiple performance measures (inputs and outputs). Classical DEA models rely on the assumption that each DMU can improve its performance by increasing its current output level and decreasing its current input levels. However, undesirable outputs (like wastes and pollutants) may often be produced together with desirable outputs in final products which have to be minimized. On the other hands, in some real-world situations, we may encounter some specific performance measures with more than one value which are measured by various standards. In this study, we referee such measures as multi-valued measures which only one of their values should be selected. For instance, unemployment rate is a multi-valued measure in economic applications since there are several definitions or standards to measure it. As a result, selecting a suitable value for a multi-valued measure is a challenging issue and is crucial for successful application of DEA. The aim of this study is to accommodate multi-valued measures in the presence of undesirable outputs. In doing so, we formulate two individual and summative selecting directional distance models and develop a pair of multiplier- and envelopment-based selecting approaches. Finally, we elaborate applicability of the proposed method using a real data on 183 NUTS 2 regions in 23 selected EU-28 countries. (C) 2019 Elsevier Ltd

  • Název v anglickém jazyce

    Multi-valued measures in DEA in the presence of undesirable outputs

  • Popis výsledku anglicky

    Data envelopment analysis (DEA) evaluates the relative efficiency of a set of comparable decision making units (DMUs) with multiple performance measures (inputs and outputs). Classical DEA models rely on the assumption that each DMU can improve its performance by increasing its current output level and decreasing its current input levels. However, undesirable outputs (like wastes and pollutants) may often be produced together with desirable outputs in final products which have to be minimized. On the other hands, in some real-world situations, we may encounter some specific performance measures with more than one value which are measured by various standards. In this study, we referee such measures as multi-valued measures which only one of their values should be selected. For instance, unemployment rate is a multi-valued measure in economic applications since there are several definitions or standards to measure it. As a result, selecting a suitable value for a multi-valued measure is a challenging issue and is crucial for successful application of DEA. The aim of this study is to accommodate multi-valued measures in the presence of undesirable outputs. In doing so, we formulate two individual and summative selecting directional distance models and develop a pair of multiplier- and envelopment-based selecting approaches. Finally, we elaborate applicability of the proposed method using a real data on 183 NUTS 2 regions in 23 selected EU-28 countries. (C) 2019 Elsevier Ltd

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50202 - Applied Economics, Econometrics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-23495S" target="_blank" >GA17-23495S: Úspory z rozsahu v modelech síťové analýzy datových obalů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Omega

  • ISSN

    0305-0483

  • e-ISSN

  • Svazek periodika

    94

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    102041

  • Kód UT WoS článku

    000528206400004

  • EID výsledku v databázi Scopus

    2-s2.0-85062937052