Multi-valued measures in DEA in the presence of undesirable outputs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F20%3A10242779" target="_blank" >RIV/61989100:27510/20:10242779 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0305048318309873?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0305048318309873?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.omega.2019.01.010" target="_blank" >10.1016/j.omega.2019.01.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multi-valued measures in DEA in the presence of undesirable outputs
Popis výsledku v původním jazyce
Data envelopment analysis (DEA) evaluates the relative efficiency of a set of comparable decision making units (DMUs) with multiple performance measures (inputs and outputs). Classical DEA models rely on the assumption that each DMU can improve its performance by increasing its current output level and decreasing its current input levels. However, undesirable outputs (like wastes and pollutants) may often be produced together with desirable outputs in final products which have to be minimized. On the other hands, in some real-world situations, we may encounter some specific performance measures with more than one value which are measured by various standards. In this study, we referee such measures as multi-valued measures which only one of their values should be selected. For instance, unemployment rate is a multi-valued measure in economic applications since there are several definitions or standards to measure it. As a result, selecting a suitable value for a multi-valued measure is a challenging issue and is crucial for successful application of DEA. The aim of this study is to accommodate multi-valued measures in the presence of undesirable outputs. In doing so, we formulate two individual and summative selecting directional distance models and develop a pair of multiplier- and envelopment-based selecting approaches. Finally, we elaborate applicability of the proposed method using a real data on 183 NUTS 2 regions in 23 selected EU-28 countries. (C) 2019 Elsevier Ltd
Název v anglickém jazyce
Multi-valued measures in DEA in the presence of undesirable outputs
Popis výsledku anglicky
Data envelopment analysis (DEA) evaluates the relative efficiency of a set of comparable decision making units (DMUs) with multiple performance measures (inputs and outputs). Classical DEA models rely on the assumption that each DMU can improve its performance by increasing its current output level and decreasing its current input levels. However, undesirable outputs (like wastes and pollutants) may often be produced together with desirable outputs in final products which have to be minimized. On the other hands, in some real-world situations, we may encounter some specific performance measures with more than one value which are measured by various standards. In this study, we referee such measures as multi-valued measures which only one of their values should be selected. For instance, unemployment rate is a multi-valued measure in economic applications since there are several definitions or standards to measure it. As a result, selecting a suitable value for a multi-valued measure is a challenging issue and is crucial for successful application of DEA. The aim of this study is to accommodate multi-valued measures in the presence of undesirable outputs. In doing so, we formulate two individual and summative selecting directional distance models and develop a pair of multiplier- and envelopment-based selecting approaches. Finally, we elaborate applicability of the proposed method using a real data on 183 NUTS 2 regions in 23 selected EU-28 countries. (C) 2019 Elsevier Ltd
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-23495S" target="_blank" >GA17-23495S: Úspory z rozsahu v modelech síťové analýzy datových obalů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Omega
ISSN
0305-0483
e-ISSN
—
Svazek periodika
94
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
102041
Kód UT WoS článku
000528206400004
EID výsledku v databázi Scopus
2-s2.0-85062937052