Risk attribution and interconnectedness in the EU via CDS data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F20%3A10246936" target="_blank" >RIV/61989100:27510/20:10246936 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007/s10287-020-00385-2.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s10287-020-00385-2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10287-020-00385-2" target="_blank" >10.1007/s10287-020-00385-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Risk attribution and interconnectedness in the EU via CDS data
Popis výsledku v původním jazyce
The global financial crisis in 2008, and the European sovereign debt crisis in 2010, highlighted how credit risk in banking sectors cannot be analysed from a uniquely micro-prudential perspective, focused on individual institutions, but it has instead to be studied and regulated from a macro-prudential perspective, considering the banking sector as a complex system. Traditional risk management tools often fail to account for the complexity of the interactions in a financial system, and rely on simplistic distributional assumptions. In recent years machine learning techniques have been increasingly used, incorporating tools such as text mining, sentiment analysis, and network models in the risk management processes of financial institutions and supervisors. Network theory applications in particular are increasingly popular, as they allow to better model the intertwined nature of financial systems. In this work we set up an analytical framework that allows to decompose the credit risk of banks and sovereign countries in the European Union according to systematic (system-wide and regional) components. Then, the non-systematic components of risk are studied using a network approach, and a simple stress-test framework is set up to identify the potential transmission channels of distress and risk spillovers. Results highlight a relevant component of credit risk that is not explained by common factors, but can still be a potential vehicle for the transmission of shocks. We also show that due to the properties of the network structure, the transmission of shocks applied to different institutions is quite diversified, both in terms of breadth and speed. Our work is useful to both regulators and financial institutions, thanks to its flexibility and its requirement of data that can be easily available.
Název v anglickém jazyce
Risk attribution and interconnectedness in the EU via CDS data
Popis výsledku anglicky
The global financial crisis in 2008, and the European sovereign debt crisis in 2010, highlighted how credit risk in banking sectors cannot be analysed from a uniquely micro-prudential perspective, focused on individual institutions, but it has instead to be studied and regulated from a macro-prudential perspective, considering the banking sector as a complex system. Traditional risk management tools often fail to account for the complexity of the interactions in a financial system, and rely on simplistic distributional assumptions. In recent years machine learning techniques have been increasingly used, incorporating tools such as text mining, sentiment analysis, and network models in the risk management processes of financial institutions and supervisors. Network theory applications in particular are increasingly popular, as they allow to better model the intertwined nature of financial systems. In this work we set up an analytical framework that allows to decompose the credit risk of banks and sovereign countries in the European Union according to systematic (system-wide and regional) components. Then, the non-systematic components of risk are studied using a network approach, and a simple stress-test framework is set up to identify the potential transmission channels of distress and risk spillovers. Results highlight a relevant component of credit risk that is not explained by common factors, but can still be a potential vehicle for the transmission of shocks. We also show that due to the properties of the network structure, the transmission of shocks applied to different institutions is quite diversified, both in terms of breadth and speed. Our work is useful to both regulators and financial institutions, thanks to its flexibility and its requirement of data that can be easily available.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-11965S" target="_blank" >GA19-11965S: Teorie sítí při problému optimalizace a trackování portfolia</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Management Science
ISSN
1619-697X
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
19
Strana od-do
549-567
Kód UT WoS článku
000608956100001
EID výsledku v databázi Scopus
2-s2.0-85099557939