Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Revised PROMETHEE algorithm with reference values

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F22%3A10248512" target="_blank" >RIV/61989100:27510/22:10248512 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/content/pdf/10.1007/s10100-021-00767-0.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007/s10100-021-00767-0.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10100-021-00767-0" target="_blank" >10.1007/s10100-021-00767-0</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Revised PROMETHEE algorithm with reference values

  • Popis výsledku v původním jazyce

    PROMETHEE method is a very popular quantitative method of decision-making with many benefits. However, the evaluation of alternatives in the original PROMETHEE method is derived only from differences in values, i.e., regardless the performance values themselves. In some situations, ignoring these values can distort the final results. This paper brings several examples of such situations, for which the original PROMETHEE fails and does not bring reliable results. Ishizaka and Resce (Soft Comput 22:7325-7338, 2018) have recently introduced the modification of PROMETHEE which considers the performance values, but also changed substantially the logic of the ranking algorithm. The aim of this paper is to modify the original PROMETHEE method to make it possible to include the performance values, without losing any main benefit of the original method and with keeping the original logic of the algorithm based on pair-wise comparisons. Two particular preference functions&apos; types are proposed for the proposed extension (Gaussian function and strictly concave function), whose choice depends on the performance of the worst-performing alternative under consideration. In addition, the new algorithm is provided also in the fuzzy environment, which is useful if the decision-maker is not able to set the input parameters of the preference function precisely. Both the deterministic and fuzzy extensions are demonstrated using numerical examples. The results show that the final ranking can be strongly influenced by the level of performance. Moreover, the fuzzy extension brings richer information through the natural interpretation provided by possibility and necessity measures if the parameters of the preference functions are imprecise. (C) 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

  • Název v anglickém jazyce

    Revised PROMETHEE algorithm with reference values

  • Popis výsledku anglicky

    PROMETHEE method is a very popular quantitative method of decision-making with many benefits. However, the evaluation of alternatives in the original PROMETHEE method is derived only from differences in values, i.e., regardless the performance values themselves. In some situations, ignoring these values can distort the final results. This paper brings several examples of such situations, for which the original PROMETHEE fails and does not bring reliable results. Ishizaka and Resce (Soft Comput 22:7325-7338, 2018) have recently introduced the modification of PROMETHEE which considers the performance values, but also changed substantially the logic of the ranking algorithm. The aim of this paper is to modify the original PROMETHEE method to make it possible to include the performance values, without losing any main benefit of the original method and with keeping the original logic of the algorithm based on pair-wise comparisons. Two particular preference functions&apos; types are proposed for the proposed extension (Gaussian function and strictly concave function), whose choice depends on the performance of the worst-performing alternative under consideration. In addition, the new algorithm is provided also in the fuzzy environment, which is useful if the decision-maker is not able to set the input parameters of the preference function precisely. Both the deterministic and fuzzy extensions are demonstrated using numerical examples. The results show that the final ranking can be strongly influenced by the level of performance. Moreover, the fuzzy extension brings richer information through the natural interpretation provided by possibility and necessity measures if the parameters of the preference functions are imprecise. (C) 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Central European Journal of Operations Research

  • ISSN

    1435-246X

  • e-ISSN

    1613-9178

  • Svazek periodika

    30

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    25

  • Strana od-do

    521-545

  • Kód UT WoS článku

    000683224300001

  • EID výsledku v databázi Scopus

    2-s2.0-85112044160