Testing convexity of the generalised hazard function
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F22%3A10251335" target="_blank" >RIV/61989100:27510/22:10251335 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00362-021-01273-w" target="_blank" >https://link.springer.com/article/10.1007/s00362-021-01273-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00362-021-01273-w" target="_blank" >10.1007/s00362-021-01273-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Testing convexity of the generalised hazard function
Popis výsledku v původním jazyce
Let F, G be a pair of absolutely continuous cumulative distributions, where F is the distribution of interest and G is assumed to be known. The composition G(-1) circle F, which is referred to as the generalised hazard function of F with respect to G, provides a flexible framework for statistical inference of F under shape restrictions, determined by G, which enables the generalisation of some well-known models, such as the increasing hazard rate family. This paper is concerned with the problem of testing the null hypothesis H-0: "G(-1) circle F is convex". The test statistic is based on the distance between the empirical distribution function and a corresponding isotonic estimator, which is denoted as the greatest relatively-convex minorant of the empirical distribution with respect to G. Under H-0, this estimator converges uniformly to F, giving rise to a rather simple and general procedure for deriving families of consistent tests, without any support restriction. As an application, a goodness-of-fit test for the increasing hazard rate family is provided.
Název v anglickém jazyce
Testing convexity of the generalised hazard function
Popis výsledku anglicky
Let F, G be a pair of absolutely continuous cumulative distributions, where F is the distribution of interest and G is assumed to be known. The composition G(-1) circle F, which is referred to as the generalised hazard function of F with respect to G, provides a flexible framework for statistical inference of F under shape restrictions, determined by G, which enables the generalisation of some well-known models, such as the increasing hazard rate family. This paper is concerned with the problem of testing the null hypothesis H-0: "G(-1) circle F is convex". The test statistic is based on the distance between the empirical distribution function and a corresponding isotonic estimator, which is denoted as the greatest relatively-convex minorant of the empirical distribution with respect to G. Under H-0, this estimator converges uniformly to F, giving rise to a rather simple and general procedure for deriving families of consistent tests, without any support restriction. As an application, a goodness-of-fit test for the increasing hazard rate family is provided.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-16764S" target="_blank" >GA20-16764S: Zobecněný přístup ke stochastické dominanci: teorie a finanční aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Statistical Papers
ISSN
0932-5026
e-ISSN
1613-9798
Svazek periodika
63
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
1271-1289
Kód UT WoS článku
000739289800001
EID výsledku v databázi Scopus
2-s2.0-85121326697