Selecting slacks-based data envelopment analysis models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F23%3A10252021" target="_blank" >RIV/61989100:27510/23:10252021 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S037722172200995X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S037722172200995X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejor.2022.12.032" target="_blank" >10.1016/j.ejor.2022.12.032</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Selecting slacks-based data envelopment analysis models
Popis výsledku v původním jazyce
Data envelopment analysis (DEA) is a well-known data-driven mathematical modeling approach that aims at evaluating the relative efficiency of a set of comparable decision making units (DMUs) with multiple inputs and multiple outputs. The number of inputs and outputs (performance factors) plays a vital role for successful applications of DEA. There is a statistical and empirical rule in DEA that if the number of performance factors is high in comparison with the number of DMUs, then a large percentage of the units will be determined as efficient, which is questionable and unacceptable in the performance evaluation context. However, in some real-world applications, the number of performance factors is relatively larger than the number of DMUs. To cope with this issue, selecting models have been developed to select a subset of performance factors that lead to acceptable results. In this paper, we extend a pair of optimistic and pessimistic approaches, involving two alternative individual and summative selecting models, based on the slacks-based model. We mathematically validate the proposed models with some theorems and lemmas and illustrate the applicability of our models using 18 active auto part companies in the largest stock exchange in Iran. (C) 2022 Elsevier B.V.
Název v anglickém jazyce
Selecting slacks-based data envelopment analysis models
Popis výsledku anglicky
Data envelopment analysis (DEA) is a well-known data-driven mathematical modeling approach that aims at evaluating the relative efficiency of a set of comparable decision making units (DMUs) with multiple inputs and multiple outputs. The number of inputs and outputs (performance factors) plays a vital role for successful applications of DEA. There is a statistical and empirical rule in DEA that if the number of performance factors is high in comparison with the number of DMUs, then a large percentage of the units will be determined as efficient, which is questionable and unacceptable in the performance evaluation context. However, in some real-world applications, the number of performance factors is relatively larger than the number of DMUs. To cope with this issue, selecting models have been developed to select a subset of performance factors that lead to acceptable results. In this paper, we extend a pair of optimistic and pessimistic approaches, involving two alternative individual and summative selecting models, based on the slacks-based model. We mathematically validate the proposed models with some theorems and lemmas and illustrate the applicability of our models using 18 active auto part companies in the largest stock exchange in Iran. (C) 2022 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-13946S" target="_blank" >GA19-13946S: Hodnocení výkonnosti při výskytu neklasifikovaných faktorů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Operational Research
ISSN
0377-2217
e-ISSN
1872-6860
Svazek periodika
308
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
1302-1318
Kód UT WoS článku
000954459300001
EID výsledku v databázi Scopus
2-s2.0-85146600847