Distribution Prediction of Decomposed Relative EVA Measure with Levy-Driven Mean-Reversion Processes: The Case of an Automotive Sector of a Small Open Economy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F23%3A10252763" target="_blank" >RIV/61989100:27510/23:10252763 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2571-9394/5/2/25" target="_blank" >https://www.mdpi.com/2571-9394/5/2/25</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/forecast5020025" target="_blank" >10.3390/forecast5020025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Distribution Prediction of Decomposed Relative EVA Measure with Levy-Driven Mean-Reversion Processes: The Case of an Automotive Sector of a Small Open Economy
Popis výsledku v původním jazyce
The paper is focused on predicting the financial performance of a small open economy with an automotive industry with an above-standard share. The paper aims to predict the probability distribution of the decomposed relative economic value-added measure of the automotive production sector NACE 29 in the Czech economy. An advanced Monte Carlo simulation prediction model is applied using the exact pyramid decomposition function. The problem is modelled using advanced stochastic process instruments such as Levy-driven mean-reversion, skew t-regression, normal inverse Gaussian distribution, and t-copula interdependencies. The proposed method procedure was found to fit the investigated financial ratios sufficiently, and the estimation was valid. The decomposed approach allows the reflection of the ratios' complex relationships and improves the prediction results. The decomposed results are compared with the direct prediction. Precision distribution tests confirmed the superiority of the decomposed approach for particular data. Moreover, the Czech automotive sector tends to decrease the mean value and median of financial performance in the future with negative asymmetry and high volatility hidden in financial ratios decomposition. Scholars can generally use forecasting methods to investigate economic system development, and practitioners can obtain quality and valuable information for decision making.
Název v anglickém jazyce
Distribution Prediction of Decomposed Relative EVA Measure with Levy-Driven Mean-Reversion Processes: The Case of an Automotive Sector of a Small Open Economy
Popis výsledku anglicky
The paper is focused on predicting the financial performance of a small open economy with an automotive industry with an above-standard share. The paper aims to predict the probability distribution of the decomposed relative economic value-added measure of the automotive production sector NACE 29 in the Czech economy. An advanced Monte Carlo simulation prediction model is applied using the exact pyramid decomposition function. The problem is modelled using advanced stochastic process instruments such as Levy-driven mean-reversion, skew t-regression, normal inverse Gaussian distribution, and t-copula interdependencies. The proposed method procedure was found to fit the investigated financial ratios sufficiently, and the estimation was valid. The decomposed approach allows the reflection of the ratios' complex relationships and improves the prediction results. The decomposed results are compared with the direct prediction. Precision distribution tests confirmed the superiority of the decomposed approach for particular data. Moreover, the Czech automotive sector tends to decrease the mean value and median of financial performance in the future with negative asymmetry and high volatility hidden in financial ratios decomposition. Scholars can generally use forecasting methods to investigate economic system development, and practitioners can obtain quality and valuable information for decision making.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Forecasting
ISSN
2571-9394
e-ISSN
2571-9394
Svazek periodika
5
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
453-471
Kód UT WoS článku
001014929700001
EID výsledku v databázi Scopus
2-s2.0-85163759098