Border collision bifurcations in a piecewise linear duopoly model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F23%3A10253596" target="_blank" >RIV/61989100:27510/23:10253596 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/full/10.1080/10236198.2023.2203276" target="_blank" >https://www.tandfonline.com/doi/full/10.1080/10236198.2023.2203276</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10236198.2023.2203276" target="_blank" >10.1080/10236198.2023.2203276</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Border collision bifurcations in a piecewise linear duopoly model
Popis výsledku v původním jazyce
We consider a duopoly model characterized by a two-dimensional non-invertible continuous map T given by piecewise linear functions, with several partitions, defining a duopoly game. The structure of the game is such that it has separate second iterate so that its dynamics can be studied via a one-dimensional composite function, that is piecewise linear with multiple partitions in which the definition of the map changes. The number of partitions may change from 2 to 5, depending on the parameters. The dynamics are characterized by degenerate bifurcations and border collision bifurcations, which are typical in maps having kink points. Here the peculiarity is the multiplicity of the partitions, which leads to bifurcations different from those occurring in maps with only one kink point. We show several bifurcations, coexistence of cycles, attracting and superstable, as well chaotic attractors and chaotic repellors, related to the outcome of particular border collision bifurcations.
Název v anglickém jazyce
Border collision bifurcations in a piecewise linear duopoly model
Popis výsledku anglicky
We consider a duopoly model characterized by a two-dimensional non-invertible continuous map T given by piecewise linear functions, with several partitions, defining a duopoly game. The structure of the game is such that it has separate second iterate so that its dynamics can be studied via a one-dimensional composite function, that is piecewise linear with multiple partitions in which the definition of the map changes. The number of partitions may change from 2 to 5, depending on the parameters. The dynamics are characterized by degenerate bifurcations and border collision bifurcations, which are typical in maps having kink points. Here the peculiarity is the multiplicity of the partitions, which leads to bifurcations different from those occurring in maps with only one kink point. We show several bifurcations, coexistence of cycles, attracting and superstable, as well chaotic attractors and chaotic repellors, related to the outcome of particular border collision bifurcations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50200 - Economics and Business
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-06282S" target="_blank" >GA23-06282S: Evoluční ekonomická dynamika s konečnou populací: Modelování a aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Difference Equations and Applications
ISSN
1023-6198
e-ISSN
1563-5120
Svazek periodika
29
Číslo periodika v rámci svazku
9-12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
"1065 "- 1093
Kód UT WoS článku
000972750200001
EID výsledku v databázi Scopus
2-s2.0-85153514703