Mean-variance vs trend-risk portfolio selection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F24%3A10252345" target="_blank" >RIV/61989100:27510/24:10252345 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11846-023-00660-x" target="_blank" >https://link.springer.com/article/10.1007/s11846-023-00660-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11846-023-00660-x" target="_blank" >10.1007/s11846-023-00660-x</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mean-variance vs trend-risk portfolio selection
Popis výsledku v původním jazyce
In this paper, we provide an alternative trend (time)-dependent risk measure to Ruttiens' accrued returns variability (Ruttiens in Comput Econ 41:407-424, 2013). We propose to adjust the calculation procedure to achieve an alternative risk measure. Our modification eliminates static mean component and it is based on the deviation of squared dispersions, which reflects the trend (time factor) precisely. Moreover, we also present a new perspective on dependency measures and we apply a PCA to a new correlation matrix in order to determine a parametric and nonparametric return approximation. In addition, the two-phase portfolio selection strategy is considered, where the mean-variance portfolio selection strategies represent the first optimization. The second one is the minimization of deviations from their trend leading to identical mean and final wealth. Finally, an empirical analysis verify the property and benefit of portfolio selection strategies based on these trend-dependent measures. In particular, the ex-post results show that applying the modified measure allows us to reduce the risk with respect to the trend of several portfolio strategies. (C) 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Název v anglickém jazyce
Mean-variance vs trend-risk portfolio selection
Popis výsledku anglicky
In this paper, we provide an alternative trend (time)-dependent risk measure to Ruttiens' accrued returns variability (Ruttiens in Comput Econ 41:407-424, 2013). We propose to adjust the calculation procedure to achieve an alternative risk measure. Our modification eliminates static mean component and it is based on the deviation of squared dispersions, which reflects the trend (time factor) precisely. Moreover, we also present a new perspective on dependency measures and we apply a PCA to a new correlation matrix in order to determine a parametric and nonparametric return approximation. In addition, the two-phase portfolio selection strategy is considered, where the mean-variance portfolio selection strategies represent the first optimization. The second one is the minimization of deviations from their trend leading to identical mean and final wealth. Finally, an empirical analysis verify the property and benefit of portfolio selection strategies based on these trend-dependent measures. In particular, the ex-post results show that applying the modified measure allows us to reduce the risk with respect to the trend of several portfolio strategies. (C) 2023, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-16764S" target="_blank" >GA20-16764S: Zobecněný přístup ke stochastické dominanci: teorie a finanční aplikace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Review of Managerial Science
ISSN
1863-6683
e-ISSN
1863-6691
Svazek periodika
18
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
32
Strana od-do
2047-2078
Kód UT WoS článku
000967804200001
EID výsledku v databázi Scopus
2-s2.0-85152650836