Measuring of the structural characteristics and adhesion of the polyaniline thin layers by the atomic force microscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F15%3A86095016" target="_blank" >RIV/61989100:27640/15:86095016 - isvavai.cz</a>
Výsledek na webu
<a href="http://konsys-t.tanger.cz/files/proceedings/20/reports/3075.pdf" target="_blank" >http://konsys-t.tanger.cz/files/proceedings/20/reports/3075.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Measuring of the structural characteristics and adhesion of the polyaniline thin layers by the atomic force microscopy
Popis výsledku v původním jazyce
Polyaniline (PANI) is the most studied conducting polymer exhibiting unique electrical and optical properties, high environmental stability, and good redox reversibility. Taking into account the wide availability of aniline and its derivatives and the low cost, PANI is an ideal candidate in many practical applications such as sensors, displays, transistors etc. In this work, the structural characterization and adhesion properties of the PANI thin layers formed by in-situ polymerization on the glass substrate is presented. The structural characteristics like a morphology, roughness and thickness of the PANI layers and their adhesion to the gold and silica were analyzed by the atomic force microscopy. Adhesion of PANI to the gold was found to be significantly higher than to the silica. Depending on the deposition time (immersion of the glass slides in the reaction mixture), the single steps of the formation of a continuous PANI film can be very well observed. Creation started by the growth and rounding of individual PANI grains on glass substrate. During the first 20 minutes, the thickness and roughness of the layer increased. In the further 10 minutes, the gaps between them were filled with additional PANI chains, coming from the surrounding solution, the roughness of the layer decreased and the thickness didn't change considerably. Finally, continuous PANI film was formed with height about 70 nm. Surface characterization of PANI layers as well as the determination of their adhesion, has a great influence on their further use and application.
Název v anglickém jazyce
Measuring of the structural characteristics and adhesion of the polyaniline thin layers by the atomic force microscopy
Popis výsledku anglicky
Polyaniline (PANI) is the most studied conducting polymer exhibiting unique electrical and optical properties, high environmental stability, and good redox reversibility. Taking into account the wide availability of aniline and its derivatives and the low cost, PANI is an ideal candidate in many practical applications such as sensors, displays, transistors etc. In this work, the structural characterization and adhesion properties of the PANI thin layers formed by in-situ polymerization on the glass substrate is presented. The structural characteristics like a morphology, roughness and thickness of the PANI layers and their adhesion to the gold and silica were analyzed by the atomic force microscopy. Adhesion of PANI to the gold was found to be significantly higher than to the silica. Depending on the deposition time (immersion of the glass slides in the reaction mixture), the single steps of the formation of a continuous PANI film can be very well observed. Creation started by the growth and rounding of individual PANI grains on glass substrate. During the first 20 minutes, the thickness and roughness of the layer increased. In the further 10 minutes, the gaps between them were filled with additional PANI chains, coming from the surrounding solution, the roughness of the layer decreased and the thickness didn't change considerably. Finally, continuous PANI film was formed with height about 70 nm. Surface characterization of PANI layers as well as the determination of their adhesion, has a great influence on their further use and application.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
CD - Makromolekulární chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
NANOCON 2014: 6th International Conference, November 5th-7th 2014, Hotel Voronez I, Brno, Czech Republic, EU
ISBN
978-80-87294-53-6
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
838-843
Název nakladatele
Tanger
Místo vydání
Ostrava
Místo konání akce
Brno
Datum konání akce
5. 11. 2014
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000350636300143