Quadratic magnetooptic spectroscopy setup based on photoelastic light modulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F18%3A10240002" target="_blank" >RIV/61989100:27640/18:10240002 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/18:10240002 RIV/00216208:11320/18:10387807
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1569441017303693?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1569441017303693?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.photonics.2018.05.007" target="_blank" >10.1016/j.photonics.2018.05.007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quadratic magnetooptic spectroscopy setup based on photoelastic light modulation
Popis výsledku v původním jazyce
In most of the cases the magnetooptic Kerr effect (MOKE) techniques rely solely on the effects linear in magnetization (M). Nevertheless, a higher-order term being proportional to M-2 and called quadratic MOKE (QMOKE) can additionally contribute to experimental data. Handling and understanding the underlying origin of QMOKE could be the key to utilize this effect for investigation of antiferromagnetic materials in the future due to their vanishing first order MOKE contribution. Also, better understanding of QMOKE and hence better understanding of magnetooptic (MO) effects in general is very valuable, as the MO effect is very much employed in research of ferro- and ferrimagnetic materials. Therefore, we present our QMOKE and longitudinal MOKE spectroscopy setup with a spectral range of 0.8-5.5 eV. The setup is based on light modulation through a photoelastic modulator and detection of second-harmonic intensity by a lock-in amplifier. To measure the Kerr ellipticity an achromatic compensator is used within the setup, whereas without it Kerr rotation is measured. The separation of QMOKE spectra directly from the measured data is based on measurements with multiple magnetization directions. So far the QMOKE separation algorithm is developed and tested for but not limited to cubic (001) oriented samples. The QMOKE spectra yielded by our setup arise from two quadratic MO parameters G(s) and 2G(44), being elements of quadratic MO tensor G, which describes perturbation of the permittivity tensor in the second order in M.
Název v anglickém jazyce
Quadratic magnetooptic spectroscopy setup based on photoelastic light modulation
Popis výsledku anglicky
In most of the cases the magnetooptic Kerr effect (MOKE) techniques rely solely on the effects linear in magnetization (M). Nevertheless, a higher-order term being proportional to M-2 and called quadratic MOKE (QMOKE) can additionally contribute to experimental data. Handling and understanding the underlying origin of QMOKE could be the key to utilize this effect for investigation of antiferromagnetic materials in the future due to their vanishing first order MOKE contribution. Also, better understanding of QMOKE and hence better understanding of magnetooptic (MO) effects in general is very valuable, as the MO effect is very much employed in research of ferro- and ferrimagnetic materials. Therefore, we present our QMOKE and longitudinal MOKE spectroscopy setup with a spectral range of 0.8-5.5 eV. The setup is based on light modulation through a photoelastic modulator and detection of second-harmonic intensity by a lock-in amplifier. To measure the Kerr ellipticity an achromatic compensator is used within the setup, whereas without it Kerr rotation is measured. The separation of QMOKE spectra directly from the measured data is based on measurements with multiple magnetization directions. So far the QMOKE separation algorithm is developed and tested for but not limited to cubic (001) oriented samples. The QMOKE spectra yielded by our setup arise from two quadratic MO parameters G(s) and 2G(44), being elements of quadratic MO tensor G, which describes perturbation of the permittivity tensor in the second order in M.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Photonics and Nanostructures - Fundamentals and Applications
ISSN
1569-4410
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
Kveten
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
60-65
Kód UT WoS článku
000445716900008
EID výsledku v databázi Scopus
2-s2.0-85047795539