Mechanistic insights into interface-facilitated dislocation nucleation and phase transformation at semicoherent bimetal interfaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F21%3A10248142" target="_blank" >RIV/61989100:27640/21:10248142 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/21:10248142
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0749641921001741?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0749641921001741?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijplas.2021.103105" target="_blank" >10.1016/j.ijplas.2021.103105</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mechanistic insights into interface-facilitated dislocation nucleation and phase transformation at semicoherent bimetal interfaces
Popis výsledku v původním jazyce
The nucleation of lattice dislocations and interface sliding at bimetal interfaces are two fundamental mechanisms of plasticity that are responsible for the mechanical responses of nanostructured materials; however, the interface-facilitated phase transformation is rarely considered owing to its relatively high energy barrier for activation. Taking the bimetal hcp/bcc interfaces with Pitch-Schrader and Burgers orientation relationships (ORs) as an illustration, we show that both non-basal dislocation nucleation and hcp-to-bcc phase transformation can be activated at the interface under external loading when the basal slip systems are effectively suppressed. The nonbasal dislocation nucleation is shown to be closely related to the dynamic evolution of misfit dislocation patterns at the semicoherent interface, in which the 1/6[0223] pyramidal dislocation is not strictly parallel to the (0111) stacking fault plane owing to the corrugated feature. In contrast to non-basal dislocation nucleation, phase transformation requires specific crystallo-graphic ORs of the constituent metals under certain loading conditions, which corresponds to the process of alternate shuffle and shear deformation that involves atomistic migration. To further reveal the competition between non-basal dislocation nucleation and phase transformation, a series of twisted interface models were constructed to systematically investigate the optimal condition of the interface geometry for phase transformation. The phase transformation occurred only when the dislocation nucleation was further hindered at some specific twist angles, suggesting a strong dependence of phase transformation on the interface structure. These findings provide a foundation to the atomistic mechanism of various interface-mediated deformation and a solution to tune interface-facilitated plasticity via interface engineering.
Název v anglickém jazyce
Mechanistic insights into interface-facilitated dislocation nucleation and phase transformation at semicoherent bimetal interfaces
Popis výsledku anglicky
The nucleation of lattice dislocations and interface sliding at bimetal interfaces are two fundamental mechanisms of plasticity that are responsible for the mechanical responses of nanostructured materials; however, the interface-facilitated phase transformation is rarely considered owing to its relatively high energy barrier for activation. Taking the bimetal hcp/bcc interfaces with Pitch-Schrader and Burgers orientation relationships (ORs) as an illustration, we show that both non-basal dislocation nucleation and hcp-to-bcc phase transformation can be activated at the interface under external loading when the basal slip systems are effectively suppressed. The nonbasal dislocation nucleation is shown to be closely related to the dynamic evolution of misfit dislocation patterns at the semicoherent interface, in which the 1/6[0223] pyramidal dislocation is not strictly parallel to the (0111) stacking fault plane owing to the corrugated feature. In contrast to non-basal dislocation nucleation, phase transformation requires specific crystallo-graphic ORs of the constituent metals under certain loading conditions, which corresponds to the process of alternate shuffle and shear deformation that involves atomistic migration. To further reveal the competition between non-basal dislocation nucleation and phase transformation, a series of twisted interface models were constructed to systematically investigate the optimal condition of the interface geometry for phase transformation. The phase transformation occurred only when the dislocation nucleation was further hindered at some specific twist angles, suggesting a strong dependence of phase transformation on the interface structure. These findings provide a foundation to the atomistic mechanism of various interface-mediated deformation and a solution to tune interface-facilitated plasticity via interface engineering.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001791" target="_blank" >EF16_013/0001791: IT4Innovations národní superpočítačové centrum - cesta k exascale</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Plasticity
ISSN
0749-6419
e-ISSN
—
Svazek periodika
146
Číslo periodika v rámci svazku
103105
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000703050700001
EID výsledku v databázi Scopus
2-s2.0-85114742310