Enhancing Photoelectrochemical Energy Storage by Large-Area CdS-Coated Nickel Nanoantenna Arrays
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F21%3A10248160" target="_blank" >RIV/61989100:27640/21:10248160 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15640/21:73610978
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsaem.1c02183" target="_blank" >https://pubs.acs.org/doi/10.1021/acsaem.1c02183</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsaem.1c02183" target="_blank" >10.1021/acsaem.1c02183</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Enhancing Photoelectrochemical Energy Storage by Large-Area CdS-Coated Nickel Nanoantenna Arrays
Popis výsledku v původním jazyce
The integration of thin films made up of periodic plasmonic nanostructures and semiconductors holds great potential to develop efficient technologies for photoelectrochemical solar energy conversion and storage. However, to date, only periodic nanoantenna arrays made up of Au have been explored, posing severe limitations in terms of scalability and costs. Here, we show that nickel nanopillar arrays can support complex electromagnetic resonances that strongly enhance the photoelectrochemical response of CdS thin films. By controlling the pitch size and diameter of the nanopillars, we obtain broadband light absorption from the ultraviolet (UV) to the near-infrared (NIR) wavelength range, thus achieving large photocurrent enhancements compared to a planar Ni/CdS sample and in line with those generated by previously reported Au nanostructures. The photocurrent enhancement is attributed to photonic modes in the UV and hybrid cavity-plasmonic modes in the visible and NIR ranges, which give rise to efficient energy transfer and hot carrier injection between metallic structures, the semiconductor, and the electrolyte. The developed nanopillar arrays are promising candidates for photoelectrochemical devices fully exploiting the solar spectrum and using Earth-abundant raw materials. (C) 2021 American Chemical Society.
Název v anglickém jazyce
Enhancing Photoelectrochemical Energy Storage by Large-Area CdS-Coated Nickel Nanoantenna Arrays
Popis výsledku anglicky
The integration of thin films made up of periodic plasmonic nanostructures and semiconductors holds great potential to develop efficient technologies for photoelectrochemical solar energy conversion and storage. However, to date, only periodic nanoantenna arrays made up of Au have been explored, posing severe limitations in terms of scalability and costs. Here, we show that nickel nanopillar arrays can support complex electromagnetic resonances that strongly enhance the photoelectrochemical response of CdS thin films. By controlling the pitch size and diameter of the nanopillars, we obtain broadband light absorption from the ultraviolet (UV) to the near-infrared (NIR) wavelength range, thus achieving large photocurrent enhancements compared to a planar Ni/CdS sample and in line with those generated by previously reported Au nanostructures. The photocurrent enhancement is attributed to photonic modes in the UV and hybrid cavity-plasmonic modes in the visible and NIR ranges, which give rise to efficient energy transfer and hot carrier injection between metallic structures, the semiconductor, and the electrolyte. The developed nanopillar arrays are promising candidates for photoelectrochemical devices fully exploiting the solar spectrum and using Earth-abundant raw materials. (C) 2021 American Chemical Society.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Energy Materials
ISSN
2574-0962
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
11367-11376
Kód UT WoS článku
000711236300097
EID výsledku v databázi Scopus
2-s2.0-85118175681