Graphene Acid for Lithium-Ion Batteries-Carboxylation Boosts Storage Capacity in Graphene
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F22%3A10248946" target="_blank" >RIV/61989100:27640/22:10248946 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989592:15310/21:73610454 RIV/61989592:15640/21:73610454 RIV/61989100:27740/22:10248946
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202103010" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202103010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/aenm.202103010" target="_blank" >10.1002/aenm.202103010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Graphene Acid for Lithium-Ion Batteries-Carboxylation Boosts Storage Capacity in Graphene
Popis výsledku v původním jazyce
Environmentally sustainable, low-cost, flexible, and lightweight energy storage technologies require advancement in materials design in order to obtain more efficient organic metal-ion batteries. Synthetically tailored organic molecules, which react reversibly with lithium, may address the need for cost-effective and eco-friendly anodes used for organic/lithium battery technologies. Among them, carboxylic group-bearing molecules act as high-energy content anodes. Although organic molecules offer rich chemistry, allowing a high content of carboxyl groups to be installed on aromatic rings, they suffer from low conductivity and leakage to the electrolytes, which restricts their actual capacity, the charging/discharging rate, and eventually their application potential. Here, a densely carboxylated but conducting graphene derivative (graphene acid (GA)) is designed to circumvent these critical limitations, enabling effective operation without compromising the mechanical or chemical stability of the electrode. Experiments including operando Raman measurements and theoretical calculations reveal the excellent charge transport, redox activity, and lithium intercalation properties of the GA anode at the single-layer level, outperforming all reported organic anodes, including commercial monolayer graphene and graphene nanoplatelets. The practical capacity and rate capability of 800 mAh g(-1) at 0.05 A g(-1) and 174 mAh g(-1) at 2.0 A g(-1) demonstrate the true potential of GA anodes in advanced lithium-ion batteries.
Název v anglickém jazyce
Graphene Acid for Lithium-Ion Batteries-Carboxylation Boosts Storage Capacity in Graphene
Popis výsledku anglicky
Environmentally sustainable, low-cost, flexible, and lightweight energy storage technologies require advancement in materials design in order to obtain more efficient organic metal-ion batteries. Synthetically tailored organic molecules, which react reversibly with lithium, may address the need for cost-effective and eco-friendly anodes used for organic/lithium battery technologies. Among them, carboxylic group-bearing molecules act as high-energy content anodes. Although organic molecules offer rich chemistry, allowing a high content of carboxyl groups to be installed on aromatic rings, they suffer from low conductivity and leakage to the electrolytes, which restricts their actual capacity, the charging/discharging rate, and eventually their application potential. Here, a densely carboxylated but conducting graphene derivative (graphene acid (GA)) is designed to circumvent these critical limitations, enabling effective operation without compromising the mechanical or chemical stability of the electrode. Experiments including operando Raman measurements and theoretical calculations reveal the excellent charge transport, redox activity, and lithium intercalation properties of the GA anode at the single-layer level, outperforming all reported organic anodes, including commercial monolayer graphene and graphene nanoplatelets. The practical capacity and rate capability of 800 mAh g(-1) at 0.05 A g(-1) and 174 mAh g(-1) at 2.0 A g(-1) demonstrate the true potential of GA anodes in advanced lithium-ion batteries.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-27454X" target="_blank" >GX19-27454X: Ovlivnění elektronických vlastností organometalických molekul pomocí jejich nekovalentních interakcí s rozpouštědly, ligandy a 2D nanosystémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Energy Materials
ISSN
1614-6832
e-ISSN
1614-6840
Svazek periodika
12
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
11
Strana od-do
nestrankovano
Kód UT WoS článku
000732712200001
EID výsledku v databázi Scopus
2-s2.0-85121572048