Perspectives on Two-Dimensional Heterostructures: Pioneering the Future of High-Energy Supercapacitors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27640%2F24%3A10257101" target="_blank" >RIV/61989100:27640/24:10257101 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02987" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02987</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.energyfuels.4c02987" target="_blank" >10.1021/acs.energyfuels.4c02987</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Perspectives on Two-Dimensional Heterostructures: Pioneering the Future of High-Energy Supercapacitors
Popis výsledku v původním jazyce
Two-dimensional materials are a class of materials consisting of nanosized dimensions resembling thin sheetlike structures. Some trending 2D materials include metal-organic frameworks (MOF), MXenes, and hexagonal boron nitride (h-BN). MOFs belong to a new class of materials with numerous merits, such as uniform distribution of tunable pore size, ultrahigh porosity, accessibility of production, and structural alteration ability. Nevertheless, the insulating nature of MOFs is regularly recognized as a bottleneck factor in the expansion of their applications, specifically in the field of electronics. MXenes have been a recent boom in material science research. These sheetlike structures are produced by customizable etching of Al from Ti3AlC2. These new classes of materials have tremendous applications in energy storage, and hexagonal boron nitride is another emerging class of 2D materials. The utilization of 2D materials in supercapacitor electrodes has demonstrated enhanced electrochemical characteristics, including higher energy density, prolonged charging-discharging cycles, exceptional capacitive properties, and increased specific capacitance. This Review details the utilization of 2D MOFs, h-BN, and MXenes in supercapacitors. 2D MOFs and MXenes offer significant surface areas and a high proportion of surface atoms rich in redox activities, facilitating improved pseudocapacitive performance by enabling interactions with electrolyte ions. Additionally, the intercalation of 2D structures such as MXene, h-BN, and MOFs with other compounds, hybrid designs for additional electrochemical active sites, and suggestions for overcoming limitations are discussed in detail.
Název v anglickém jazyce
Perspectives on Two-Dimensional Heterostructures: Pioneering the Future of High-Energy Supercapacitors
Popis výsledku anglicky
Two-dimensional materials are a class of materials consisting of nanosized dimensions resembling thin sheetlike structures. Some trending 2D materials include metal-organic frameworks (MOF), MXenes, and hexagonal boron nitride (h-BN). MOFs belong to a new class of materials with numerous merits, such as uniform distribution of tunable pore size, ultrahigh porosity, accessibility of production, and structural alteration ability. Nevertheless, the insulating nature of MOFs is regularly recognized as a bottleneck factor in the expansion of their applications, specifically in the field of electronics. MXenes have been a recent boom in material science research. These sheetlike structures are produced by customizable etching of Al from Ti3AlC2. These new classes of materials have tremendous applications in energy storage, and hexagonal boron nitride is another emerging class of 2D materials. The utilization of 2D materials in supercapacitor electrodes has demonstrated enhanced electrochemical characteristics, including higher energy density, prolonged charging-discharging cycles, exceptional capacitive properties, and increased specific capacitance. This Review details the utilization of 2D MOFs, h-BN, and MXenes in supercapacitors. 2D MOFs and MXenes offer significant surface areas and a high proportion of surface atoms rich in redox activities, facilitating improved pseudocapacitive performance by enabling interactions with electrolyte ions. Additionally, the intercalation of 2D structures such as MXene, h-BN, and MOFs with other compounds, hybrid designs for additional electrochemical active sites, and suggestions for overcoming limitations are discussed in detail.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21000 - Nano-technology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy & Fuels
ISSN
0887-0624
e-ISSN
1520-5029
Svazek periodika
38
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
18242-18264
Kód UT WoS článku
001310573700001
EID výsledku v databázi Scopus
2-s2.0-85203818668